/* * Copyright (c) 2006-2014, openmetaverse.org * All rights reserved. * * - Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * - Neither the name of the openmetaverse.org nor the names * of its contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ using System; using System.Runtime.InteropServices; using System.Globalization; namespace OpenMetaverse { /// /// A two-dimensional vector with floating-point values /// [Serializable] [StructLayout(LayoutKind.Sequential)] public struct Vector2 : IComparable, IEquatable { /// X value public float X; /// Y value public float Y; #region Constructors public Vector2(float x, float y) { X = x; Y = y; } public Vector2(float value) { X = value; Y = value; } public Vector2(Vector2 vector) { X = vector.X; Y = vector.Y; } #endregion Constructors #region Public Methods /// /// Test if this vector is equal to another vector, within a given /// tolerance range /// /// Vector to test against /// The acceptable magnitude of difference /// between the two vectors /// True if the magnitude of difference between the two vectors /// is less than the given tolerance, otherwise false public bool ApproxEquals(Vector2 vec, float tolerance) { Vector2 diff = this - vec; return (diff.LengthSquared() <= tolerance * tolerance); } /// /// Test if this vector is composed of all finite numbers /// public bool IsFinite() { return Utils.IsFinite(X) && Utils.IsFinite(Y); } /// /// IComparable.CompareTo implementation /// public int CompareTo(Vector2 vector) { return Length().CompareTo(vector.Length()); } /// /// Builds a vector from a byte array /// /// Byte array containing two four-byte floats /// Beginning position in the byte array public void FromBytes(byte[] byteArray, int pos) { if (!BitConverter.IsLittleEndian) { // Big endian architecture byte[] conversionBuffer = new byte[8]; Buffer.BlockCopy(byteArray, pos, conversionBuffer, 0, 8); Array.Reverse(conversionBuffer, 0, 4); Array.Reverse(conversionBuffer, 4, 4); X = BitConverter.ToSingle(conversionBuffer, 0); Y = BitConverter.ToSingle(conversionBuffer, 4); } else { // Little endian architecture X = BitConverter.ToSingle(byteArray, pos); Y = BitConverter.ToSingle(byteArray, pos + 4); } } /// /// Returns the raw bytes for this vector /// /// An eight-byte array containing X and Y public byte[] GetBytes() { byte[] byteArray = new byte[8]; ToBytes(byteArray, 0); return byteArray; } /// /// Writes the raw bytes for this vector to a byte array /// /// Destination byte array /// Position in the destination array to start /// writing. Must be at least 8 bytes before the end of the array public void ToBytes(byte[] dest, int pos) { Buffer.BlockCopy(BitConverter.GetBytes(X), 0, dest, pos + 0, 4); Buffer.BlockCopy(BitConverter.GetBytes(Y), 0, dest, pos + 4, 4); if (!BitConverter.IsLittleEndian) { Array.Reverse(dest, pos + 0, 4); Array.Reverse(dest, pos + 4, 4); } } public float Length() { return (float)Math.Sqrt(DistanceSquared(this, Zero)); } public float LengthSquared() { return DistanceSquared(this, Zero); } public void Normalize() { this = Normalize(this); } #endregion Public Methods #region Static Methods public static Vector2 Add(Vector2 value1, Vector2 value2) { value1.X += value2.X; value1.Y += value2.Y; return value1; } public static Vector2 Clamp(Vector2 value1, Vector2 min, Vector2 max) { return new Vector2( Utils.Clamp(value1.X, min.X, max.X), Utils.Clamp(value1.Y, min.Y, max.Y)); } public static float Distance(Vector2 value1, Vector2 value2) { return (float)Math.Sqrt(DistanceSquared(value1, value2)); } public static float DistanceSquared(Vector2 value1, Vector2 value2) { return (value1.X - value2.X) * (value1.X - value2.X) + (value1.Y - value2.Y) * (value1.Y - value2.Y); } public static Vector2 Divide(Vector2 value1, Vector2 value2) { value1.X /= value2.X; value1.Y /= value2.Y; return value1; } public static Vector2 Divide(Vector2 value1, float divider) { float factor = 1 / divider; value1.X *= factor; value1.Y *= factor; return value1; } public static float Dot(Vector2 value1, Vector2 value2) { return value1.X * value2.X + value1.Y * value2.Y; } public static Vector2 Lerp(Vector2 value1, Vector2 value2, float amount) { return new Vector2( Utils.Lerp(value1.X, value2.X, amount), Utils.Lerp(value1.Y, value2.Y, amount)); } public static Vector2 Max(Vector2 value1, Vector2 value2) { return new Vector2( Math.Max(value1.X, value2.X), Math.Max(value1.Y, value2.Y)); } public static Vector2 Min(Vector2 value1, Vector2 value2) { return new Vector2( Math.Min(value1.X, value2.X), Math.Min(value1.Y, value2.Y)); } public static Vector2 Multiply(Vector2 value1, Vector2 value2) { value1.X *= value2.X; value1.Y *= value2.Y; return value1; } public static Vector2 Multiply(Vector2 value1, float scaleFactor) { value1.X *= scaleFactor; value1.Y *= scaleFactor; return value1; } public static Vector2 Negate(Vector2 value) { value.X = -value.X; value.Y = -value.Y; return value; } public static Vector2 Normalize(Vector2 value) { const float MAG_THRESHOLD = 0.0000001f; float factor = DistanceSquared(value, Zero); if (factor > MAG_THRESHOLD) { factor = 1f / (float)Math.Sqrt(factor); value.X *= factor; value.Y *= factor; } else { value.X = 0f; value.Y = 0f; } return value; } /// /// Parse a vector from a string /// /// A string representation of a 2D vector, enclosed /// in arrow brackets and separated by commas public static Vector3 Parse(string val) { char[] splitChar = { ',' }; string[] split = val.Replace("<", String.Empty).Replace(">", String.Empty).Split(splitChar); return new Vector3( float.Parse(split[0].Trim(), Utils.EnUsCulture), float.Parse(split[1].Trim(), Utils.EnUsCulture), float.Parse(split[2].Trim(), Utils.EnUsCulture)); } public static bool TryParse(string val, out Vector3 result) { try { result = Parse(val); return true; } catch (Exception) { result = Vector3.Zero; return false; } } /// /// Interpolates between two vectors using a cubic equation /// public static Vector2 SmoothStep(Vector2 value1, Vector2 value2, float amount) { return new Vector2( Utils.SmoothStep(value1.X, value2.X, amount), Utils.SmoothStep(value1.Y, value2.Y, amount)); } public static Vector2 Subtract(Vector2 value1, Vector2 value2) { value1.X -= value2.X; value1.Y -= value2.Y; return value1; } public static Vector2 Transform(Vector2 position, Matrix4 matrix) { position.X = (position.X * matrix.M11) + (position.Y * matrix.M21) + matrix.M41; position.Y = (position.X * matrix.M12) + (position.Y * matrix.M22) + matrix.M42; return position; } public static Vector2 TransformNormal(Vector2 position, Matrix4 matrix) { position.X = (position.X * matrix.M11) + (position.Y * matrix.M21); position.Y = (position.X * matrix.M12) + (position.Y * matrix.M22); return position; } #endregion Static Methods #region Overrides public override bool Equals(object obj) { return (obj is Vector2) ? this == ((Vector2)obj) : false; } public bool Equals(Vector2 other) { return this == other; } public override int GetHashCode() { int hash = X.GetHashCode(); hash = hash * 31 + Y.GetHashCode(); return hash; } /// /// Get a formatted string representation of the vector /// /// A string representation of the vector public override string ToString() { return String.Format(Utils.EnUsCulture, "<{0}, {1}>", X, Y); } /// /// Get a string representation of the vector elements with up to three /// decimal digits and separated by spaces only /// /// Raw string representation of the vector public string ToRawString() { CultureInfo enUs = new CultureInfo("en-us"); enUs.NumberFormat.NumberDecimalDigits = 3; return String.Format(enUs, "{0} {1}", X, Y); } #endregion Overrides #region Operators public static bool operator ==(Vector2 value1, Vector2 value2) { return value1.X == value2.X && value1.Y == value2.Y; } public static bool operator !=(Vector2 value1, Vector2 value2) { return value1.X != value2.X || value1.Y != value2.Y; } public static Vector2 operator +(Vector2 value1, Vector2 value2) { value1.X += value2.X; value1.Y += value2.Y; return value1; } public static Vector2 operator -(Vector2 value) { value.X = -value.X; value.Y = -value.Y; return value; } public static Vector2 operator -(Vector2 value1, Vector2 value2) { value1.X -= value2.X; value1.Y -= value2.Y; return value1; } public static Vector2 operator *(Vector2 value1, Vector2 value2) { value1.X *= value2.X; value1.Y *= value2.Y; return value1; } public static Vector2 operator *(Vector2 value, float scaleFactor) { value.X *= scaleFactor; value.Y *= scaleFactor; return value; } public static Vector2 operator /(Vector2 value1, Vector2 value2) { value1.X /= value2.X; value1.Y /= value2.Y; return value1; } public static Vector2 operator /(Vector2 value1, float divider) { float factor = 1 / divider; value1.X *= factor; value1.Y *= factor; return value1; } #endregion Operators /// A vector with a value of 0,0 public readonly static Vector2 Zero = new Vector2(); /// A vector with a value of 1,1 public readonly static Vector2 One = new Vector2(1f, 1f); /// A vector with a value of 1,0 public readonly static Vector2 UnitX = new Vector2(1f, 0f); /// A vector with a value of 0,1 public readonly static Vector2 UnitY = new Vector2(0f, 1f); } }