// -*- C++ -*- // Copyright (C) 2011-2015 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file include/scoped_allocator * This is a Standard C++ Library header. */ #ifndef _SCOPED_ALLOCATOR #define _SCOPED_ALLOCATOR 1 #pragma GCC system_header #if __cplusplus < 201103L # include #else #include #include #include namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION template class _Pred, typename... _Allocs> struct __any_of; template class _Pred, typename _Alloc, typename... _Allocs> struct __any_of<_Pred, _Alloc, _Allocs...> : __or_<_Pred<_Alloc>, __any_of<_Pred, _Allocs...>> { }; template class _Pred, typename _Alloc> struct __any_of<_Pred, _Alloc> : _Pred<_Alloc> { }; /** * @addtogroup allocators * @{ */ template struct __propagate_on_copy : allocator_traits<_Alloc>::propagate_on_container_copy_assignment { }; template struct __propagate_on_move : allocator_traits<_Alloc>::propagate_on_container_move_assignment { }; template struct __propagate_on_swap : allocator_traits<_Alloc>::propagate_on_container_swap { }; template inline auto __do_outermost(_Alloc& __a, _Alloc*) -> decltype(__a.outer_allocator()) { return __a.outer_allocator(); } template inline _Alloc& __do_outermost(_Alloc& __a, ...) { return __a; } // TODO: make recursive (see note in 20.12.4/1) template inline auto __outermost(_Alloc& __a) -> decltype(__do_outermost(__a, &__a)) { return __do_outermost(__a, &__a); } template class scoped_allocator_adaptor; template struct __inner_type_impl; template struct __inner_type_impl<_Outer> { typedef scoped_allocator_adaptor<_Outer> __type; __inner_type_impl() = default; __inner_type_impl(const __inner_type_impl&) = default; __inner_type_impl(__inner_type_impl&&) = default; __inner_type_impl& operator=(const __inner_type_impl&) = default; __inner_type_impl& operator=(__inner_type_impl&&) = default; template __inner_type_impl(const __inner_type_impl<_Alloc>& __other) { } template __inner_type_impl(__inner_type_impl<_Alloc>&& __other) { } __type& _M_get(__type* __p) noexcept { return *__p; } const __type& _M_get(const __type* __p) const noexcept { return *__p; } tuple<> _M_tie() const noexcept { return tuple<>(); } bool operator==(const __inner_type_impl&) const noexcept { return true; } }; template struct __inner_type_impl<_Outer, _InnerHead, _InnerTail...> { typedef scoped_allocator_adaptor<_InnerHead, _InnerTail...> __type; __inner_type_impl() = default; __inner_type_impl(const __inner_type_impl&) = default; __inner_type_impl(__inner_type_impl&&) = default; __inner_type_impl& operator=(const __inner_type_impl&) = default; __inner_type_impl& operator=(__inner_type_impl&&) = default; template __inner_type_impl(const __inner_type_impl<_Allocs...>& __other) : _M_inner(__other._M_inner) { } template __inner_type_impl(__inner_type_impl<_Allocs...>&& __other) : _M_inner(std::move(__other._M_inner)) { } template explicit __inner_type_impl(_Args&&... __args) : _M_inner(std::forward<_Args>(__args)...) { } __type& _M_get(void*) noexcept { return _M_inner; } const __type& _M_get(const void*) const noexcept { return _M_inner; } tuple _M_tie() const noexcept { return _M_inner._M_tie(); } bool operator==(const __inner_type_impl& __other) const noexcept { return _M_inner == __other._M_inner; } private: template friend class __inner_type_impl; template friend class scoped_allocator_adaptor; __type _M_inner; }; /// Primary class template. template class scoped_allocator_adaptor : public _OuterAlloc { typedef allocator_traits<_OuterAlloc> __traits; typedef __inner_type_impl<_OuterAlloc, _InnerAllocs...> __inner_type; __inner_type _M_inner; template friend class scoped_allocator_adaptor; template friend class __inner_type_impl; tuple _M_tie() const noexcept { return std::tuple_cat(std::tie(outer_allocator()), _M_inner._M_tie()); } template using __outermost_type = typename std::decay()))>::type; template using __outermost_alloc_traits = allocator_traits<__outermost_type<_Alloc>>; template void _M_construct(__uses_alloc0, _Tp* __p, _Args&&... __args) { typedef __outermost_alloc_traits _O_traits; _O_traits::construct(__outermost(*this), __p, std::forward<_Args>(__args)...); } typedef __uses_alloc1 __uses_alloc1_; typedef __uses_alloc2 __uses_alloc2_; template void _M_construct(__uses_alloc1_, _Tp* __p, _Args&&... __args) { typedef __outermost_alloc_traits _O_traits; _O_traits::construct(__outermost(*this), __p, allocator_arg, inner_allocator(), std::forward<_Args>(__args)...); } template void _M_construct(__uses_alloc2_, _Tp* __p, _Args&&... __args) { typedef __outermost_alloc_traits _O_traits; _O_traits::construct(__outermost(*this), __p, std::forward<_Args>(__args)..., inner_allocator()); } template static _Alloc _S_select_on_copy(const _Alloc& __a) { typedef allocator_traits<_Alloc> __a_traits; return __a_traits::select_on_container_copy_construction(__a); } template scoped_allocator_adaptor(tuple __refs, _Index_tuple<_Indices...>) : _OuterAlloc(_S_select_on_copy(std::get<0>(__refs))), _M_inner(_S_select_on_copy(std::get<_Indices+1>(__refs))...) { } public: typedef _OuterAlloc outer_allocator_type; typedef typename __inner_type::__type inner_allocator_type; typedef typename __traits::value_type value_type; typedef typename __traits::size_type size_type; typedef typename __traits::difference_type difference_type; typedef typename __traits::pointer pointer; typedef typename __traits::const_pointer const_pointer; typedef typename __traits::void_pointer void_pointer; typedef typename __traits::const_void_pointer const_void_pointer; typedef typename conditional< __any_of<__propagate_on_copy, _OuterAlloc, _InnerAllocs...>::value, true_type, false_type>::type propagate_on_container_copy_assignment; typedef typename conditional< __any_of<__propagate_on_move, _OuterAlloc, _InnerAllocs...>::value, true_type, false_type>::type propagate_on_container_move_assignment; typedef typename conditional< __any_of<__propagate_on_swap, _OuterAlloc, _InnerAllocs...>::value, true_type, false_type>::type propagate_on_container_swap; template struct rebind { typedef scoped_allocator_adaptor< typename __traits::template rebind_alloc<_Tp>, _InnerAllocs...> other; }; scoped_allocator_adaptor() : _OuterAlloc(), _M_inner() { } template scoped_allocator_adaptor(_Outer2&& __outer, const _InnerAllocs&... __inner) : _OuterAlloc(std::forward<_Outer2>(__outer)), _M_inner(__inner...) { } scoped_allocator_adaptor(const scoped_allocator_adaptor& __other) : _OuterAlloc(__other.outer_allocator()), _M_inner(__other._M_inner) { } scoped_allocator_adaptor(scoped_allocator_adaptor&& __other) : _OuterAlloc(std::move(__other.outer_allocator())), _M_inner(std::move(__other._M_inner)) { } template scoped_allocator_adaptor( const scoped_allocator_adaptor<_Outer2, _InnerAllocs...>& __other) : _OuterAlloc(__other.outer_allocator()), _M_inner(__other._M_inner) { } template scoped_allocator_adaptor( scoped_allocator_adaptor<_Outer2, _InnerAllocs...>&& __other) : _OuterAlloc(std::move(__other.outer_allocator())), _M_inner(std::move(__other._M_inner)) { } scoped_allocator_adaptor& operator=(const scoped_allocator_adaptor&) = default; scoped_allocator_adaptor& operator=(scoped_allocator_adaptor&&) = default; inner_allocator_type& inner_allocator() noexcept { return _M_inner._M_get(this); } const inner_allocator_type& inner_allocator() const noexcept { return _M_inner._M_get(this); } outer_allocator_type& outer_allocator() noexcept { return static_cast<_OuterAlloc&>(*this); } const outer_allocator_type& outer_allocator() const noexcept { return static_cast(*this); } pointer allocate(size_type __n) { return __traits::allocate(outer_allocator(), __n); } pointer allocate(size_type __n, const_void_pointer __hint) { return __traits::allocate(outer_allocator(), __n, __hint); } void deallocate(pointer __p, size_type __n) { return __traits::deallocate(outer_allocator(), __p, __n); } size_type max_size() const { return __traits::max_size(outer_allocator()); } template void construct(_Tp* __p, _Args&&... __args) { auto& __inner = inner_allocator(); auto __use_tag = __use_alloc<_Tp, inner_allocator_type, _Args...>(__inner); _M_construct(__use_tag, __p, std::forward<_Args>(__args)...); } template void construct(pair<_T1, _T2>* __p, piecewise_construct_t, tuple<_Args1...> __x, tuple<_Args2...> __y) { // _GLIBCXX_RESOLVE_LIB_DEFECTS // 2203. wrong argument types for piecewise construction auto& __inner = inner_allocator(); auto __x_use_tag = __use_alloc<_T1, inner_allocator_type, _Args1...>(__inner); auto __y_use_tag = __use_alloc<_T2, inner_allocator_type, _Args2...>(__inner); typedef __outermost_alloc_traits _O_traits; _O_traits::construct(__outermost(*this), __p, piecewise_construct, _M_construct_p(__x_use_tag, __x), _M_construct_p(__y_use_tag, __y)); } template void construct(pair<_T1, _T2>* __p) { construct(__p, piecewise_construct, tuple<>(), tuple<>()); } template void construct(pair<_T1, _T2>* __p, _Up&& __u, _Vp&& __v) { construct(__p, piecewise_construct, std::forward_as_tuple(std::forward<_Up>(__u)), std::forward_as_tuple(std::forward<_Vp>(__v))); } template void construct(pair<_T1, _T2>* __p, const pair<_Up, _Vp>& __x) { construct(__p, piecewise_construct, std::forward_as_tuple(__x.first), std::forward_as_tuple(__x.second)); } template void construct(pair<_T1, _T2>* __p, pair<_Up, _Vp>&& __x) { construct(__p, piecewise_construct, std::forward_as_tuple(std::forward<_Up>(__x.first)), std::forward_as_tuple(std::forward<_Vp>(__x.second))); } template void destroy(_Tp* __p) { typedef __outermost_alloc_traits _O_traits; _O_traits::destroy(__outermost(*this), __p); } scoped_allocator_adaptor select_on_container_copy_construction() const { typedef typename _Build_index_tuple::__type _Indices; return scoped_allocator_adaptor(_M_tie(), _Indices()); } template friend bool operator==(const scoped_allocator_adaptor<_OutA1, _InA...>& __a, const scoped_allocator_adaptor<_OutA2, _InA...>& __b) noexcept; private: template _Tuple&& _M_construct_p(__uses_alloc0, _Tuple& __t) { return std::move(__t); } template std::tuple _M_construct_p(__uses_alloc1_, std::tuple<_Args...>& __t) { typedef std::tuple _Tuple; return std::tuple_cat(_Tuple(allocator_arg, inner_allocator()), std::move(__t)); } template std::tuple<_Args..., inner_allocator_type&> _M_construct_p(__uses_alloc2_, std::tuple<_Args...>& __t) { typedef std::tuple _Tuple; return std::tuple_cat(std::move(__t), _Tuple(inner_allocator())); } }; template inline bool operator==(const scoped_allocator_adaptor<_OutA1, _InA...>& __a, const scoped_allocator_adaptor<_OutA2, _InA...>& __b) noexcept { return __a.outer_allocator() == __b.outer_allocator() && __a._M_inner == __b._M_inner; } template inline bool operator!=(const scoped_allocator_adaptor<_OutA1, _InA...>& __a, const scoped_allocator_adaptor<_OutA2, _InA...>& __b) noexcept { return !(__a == __b); } /// @} _GLIBCXX_END_NAMESPACE_VERSION } // namespace #endif // C++11 #endif // _SCOPED_ALLOCATOR