/*
* Copyright (c) Contributors, http://opensimulator.org/
* See CONTRIBUTORS.TXT for a full list of copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the OpenSimulator Project nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
using System;
using System.Collections;
using System.Globalization;
using System.Text.RegularExpressions;
using OpenSim.Framework;
using OpenMetaverse;
using OMV_Vector3 = OpenMetaverse.Vector3;
using OMV_Vector3d = OpenMetaverse.Vector3d;
using OMV_Quaternion = OpenMetaverse.Quaternion;
namespace OpenSim.Region.ScriptEngine.Shared
{
[Serializable]
public partial class LSL_Types
{
// Types are kept is separate .dll to avoid having to add whatever .dll it is in it to script AppDomain
[Serializable]
public struct Vector3
{
public double x;
public double y;
public double z;
#region Constructors
public Vector3(Vector3 vector)
{
x = (float)vector.x;
y = (float)vector.y;
z = (float)vector.z;
}
public Vector3(OMV_Vector3 vector)
{
x = vector.X;
y = vector.Y;
z = vector.Z;
}
public Vector3(OMV_Vector3d vector)
{
x = vector.X;
y = vector.Y;
z = vector.Z;
}
public Vector3(double X, double Y, double Z)
{
x = X;
y = Y;
z = Z;
}
public Vector3(string str)
{
str = str.Replace('<', ' ');
str = str.Replace('>', ' ');
string[] tmps = str.Split(new Char[] { ',', '<', '>' });
if (tmps.Length < 3)
{
x=y=z=0;
return;
}
bool res;
res = Double.TryParse(tmps[0], NumberStyles.Float, Culture.NumberFormatInfo, out x);
res = res & Double.TryParse(tmps[1], NumberStyles.Float, Culture.NumberFormatInfo, out y);
res = res & Double.TryParse(tmps[2], NumberStyles.Float, Culture.NumberFormatInfo, out z);
}
#endregion
#region Overriders
public override string ToString()
{
string s=String.Format("<{0:0.000000},{1:0.000000},{2:0.000000}>", x, y, z);
return s;
}
public static explicit operator LSLString(Vector3 vec)
{
string s=String.Format("<{0:0.000000},{1:0.000000},{2:0.000000}>", vec.x, vec.y, vec.z);
return new LSLString(s);
}
public static explicit operator string(Vector3 vec)
{
string s=String.Format("<{0:0.000000},{1:0.000000},{2:0.000000}>", vec.x, vec.y, vec.z);
return s;
}
public static explicit operator Vector3(string s)
{
return new Vector3(s);
}
public static implicit operator list(Vector3 vec)
{
return new list(new object[] { vec });
}
public static implicit operator OMV_Vector3(Vector3 vec)
{
return new OMV_Vector3((float)vec.x, (float)vec.y, (float)vec.z);
}
public static implicit operator Vector3(OMV_Vector3 vec)
{
return new Vector3(vec);
}
public static implicit operator OMV_Vector3d(Vector3 vec)
{
return new OMV_Vector3d(vec.x, vec.y, vec.z);
}
public static implicit operator Vector3(OMV_Vector3d vec)
{
return new Vector3(vec);
}
public static bool operator ==(Vector3 lhs, Vector3 rhs)
{
return (lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z);
}
public static bool operator !=(Vector3 lhs, Vector3 rhs)
{
return !(lhs == rhs);
}
public override int GetHashCode()
{
return (x.GetHashCode() ^ y.GetHashCode() ^ z.GetHashCode());
}
public override bool Equals(object o)
{
if (!(o is Vector3)) return false;
Vector3 vector = (Vector3)o;
return (x == vector.x && y == vector.y && z == vector.z);
}
public static Vector3 operator -(Vector3 vector)
{
return new Vector3(-vector.x, -vector.y, -vector.z);
}
#endregion
#region Vector & Vector Math
// Vector-Vector Math
public static Vector3 operator +(Vector3 lhs, Vector3 rhs)
{
return new Vector3(lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z);
}
public static Vector3 operator -(Vector3 lhs, Vector3 rhs)
{
return new Vector3(lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z);
}
public static LSLFloat operator *(Vector3 lhs, Vector3 rhs)
{
return Dot(lhs, rhs);
}
public static Vector3 operator %(Vector3 v1, Vector3 v2)
{
//Cross product
Vector3 tv;
tv.x = (v1.y * v2.z) - (v1.z * v2.y);
tv.y = (v1.z * v2.x) - (v1.x * v2.z);
tv.z = (v1.x * v2.y) - (v1.y * v2.x);
return tv;
}
#endregion
#region Vector & Float Math
// Vector-Float and Float-Vector Math
public static Vector3 operator *(Vector3 vec, float val)
{
return new Vector3(vec.x * val, vec.y * val, vec.z * val);
}
public static Vector3 operator *(float val, Vector3 vec)
{
return new Vector3(vec.x * val, vec.y * val, vec.z * val);
}
public static Vector3 operator /(Vector3 v, float f)
{
v.x = v.x / f;
v.y = v.y / f;
v.z = v.z / f;
return v;
}
#endregion
#region Vector & Double Math
public static Vector3 operator *(Vector3 vec, double val)
{
return new Vector3(vec.x * val, vec.y * val, vec.z * val);
}
public static Vector3 operator *(double val, Vector3 vec)
{
return new Vector3(vec.x * val, vec.y * val, vec.z * val);
}
public static Vector3 operator /(Vector3 v, double f)
{
v.x = v.x / f;
v.y = v.y / f;
v.z = v.z / f;
return v;
}
#endregion
#region Vector & Rotation Math
// Vector-Rotation Math
public static Vector3 operator *(Vector3 v, Quaternion r)
{
Quaternion vq = new Quaternion(v.x, v.y, v.z, 0);
Quaternion nq = new Quaternion(-r.x, -r.y, -r.z, r.s);
// adapted for operator * computing "b * a"
Quaternion result = nq * (vq * r);
return new Vector3(result.x, result.y, result.z);
}
public static Vector3 operator /(Vector3 v, Quaternion r)
{
r.s = -r.s;
return v * r;
}
#endregion
#region Static Helper Functions
public static double Dot(Vector3 v1, Vector3 v2)
{
return (v1.x * v2.x) + (v1.y * v2.y) + (v1.z * v2.z);
}
public static Vector3 Cross(Vector3 v1, Vector3 v2)
{
return new Vector3
(
v1.y * v2.z - v1.z * v2.y,
v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x
);
}
public static double Mag(Vector3 v)
{
return Math.Sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
}
public static Vector3 Norm(Vector3 vector)
{
double mag = Mag(vector);
if (mag > 0.0)
{
double invMag = 1.0 / mag;
return vector * invMag;
}
return new Vector3(0, 0, 0);
}
#endregion
}
[Serializable]
public struct Quaternion
{
public double x;
public double y;
public double z;
public double s;
#region Constructors
public Quaternion(Quaternion Quat)
{
x = (float)Quat.x;
y = (float)Quat.y;
z = (float)Quat.z;
s = (float)Quat.s;
if (x == 0 && y == 0 && z == 0 && s == 0)
s = 1;
}
public Quaternion(double X, double Y, double Z, double S)
{
x = X;
y = Y;
z = Z;
s = S;
if (x == 0 && y == 0 && z == 0 && s == 0)
s = 1;
}
public Quaternion(string str)
{
str = str.Replace('<', ' ');
str = str.Replace('>', ' ');
string[] tmps = str.Split(new Char[] { ',', '<', '>' });
if (tmps.Length < 4)
{
x=y=z=s=0;
return;
}
bool res;
res = Double.TryParse(tmps[0], NumberStyles.Float, Culture.NumberFormatInfo, out x);
res = res & Double.TryParse(tmps[1], NumberStyles.Float, Culture.NumberFormatInfo, out y);
res = res & Double.TryParse(tmps[2], NumberStyles.Float, Culture.NumberFormatInfo, out z);
res = res & Double.TryParse(tmps[3], NumberStyles.Float, Culture.NumberFormatInfo, out s);
if (x == 0 && y == 0 && z == 0 && s == 0)
s = 1;
}
public Quaternion(OMV_Quaternion rot)
{
x = rot.X;
y = rot.Y;
z = rot.Z;
s = rot.W;
}
#endregion
#region Methods
public Quaternion Normalize()
{
double length = Math.Sqrt(x * x + y * y + z * z + s * s);
if (length < float.Epsilon)
{
x = 0;
y = 0;
z = 0;
s = 1;
}
else
{
double invLength = 1.0 / length;
x *= invLength;
y *= invLength;
z *= invLength;
s *= invLength;
}
return this;
}
#endregion
#region Overriders
public override int GetHashCode()
{
return (x.GetHashCode() ^ y.GetHashCode() ^ z.GetHashCode() ^ s.GetHashCode());
}
public override bool Equals(object o)
{
if (!(o is Quaternion)) return false;
Quaternion quaternion = (Quaternion)o;
return x == quaternion.x && y == quaternion.y && z == quaternion.z && s == quaternion.s;
}
public override string ToString()
{
string st=String.Format(Culture.FormatProvider, "<{0:0.000000},{1:0.000000},{2:0.000000},{3:0.000000}>", x, y, z, s);
return st;
}
public static explicit operator string(Quaternion r)
{
string s=String.Format("<{0:0.000000},{1:0.000000},{2:0.000000},{3:0.000000}>", r.x, r.y, r.z, r.s);
return s;
}
public static explicit operator LSLString(Quaternion r)
{
string s=String.Format("<{0:0.000000},{1:0.000000},{2:0.000000},{3:0.000000}>", r.x, r.y, r.z, r.s);
return new LSLString(s);
}
public static explicit operator Quaternion(string s)
{
return new Quaternion(s);
}
public static implicit operator list(Quaternion r)
{
return new list(new object[] { r });
}
public static implicit operator OMV_Quaternion(Quaternion rot)
{
// LSL quaternions can normalize to 0, normal Quaternions can't.
if (rot.s == 0 && rot.x == 0 && rot.y == 0 && rot.z == 0)
rot.z = 1; // ZERO_ROTATION = 0,0,0,1
OMV_Quaternion omvrot = new OMV_Quaternion((float)rot.x, (float)rot.y, (float)rot.z, (float)rot.s);
omvrot.Normalize();
return omvrot;
}
public static implicit operator Quaternion(OMV_Quaternion rot)
{
return new Quaternion(rot);
}
public static bool operator ==(Quaternion lhs, Quaternion rhs)
{
// Return true if the fields match:
return lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z && lhs.s == rhs.s;
}
public static bool operator !=(Quaternion lhs, Quaternion rhs)
{
return !(lhs == rhs);
}
public static double Mag(Quaternion q)
{
return Math.Sqrt(q.x * q.x + q.y * q.y + q.z * q.z + q.s * q.s);
}
#endregion
public static Quaternion operator +(Quaternion a, Quaternion b)
{
return new Quaternion(a.x + b.x, a.y + b.y, a.z + b.z, a.s + b.s);
}
public static Quaternion operator /(Quaternion a, Quaternion b)
{
b.s = -b.s;
return a * b;
}
public static Quaternion operator -(Quaternion a, Quaternion b)
{
return new Quaternion(a.x - b.x, a.y - b.y, a.z - b.z, a.s - b.s);
}
// using the equations below, we need to do "b * a" to be compatible with LSL
public static Quaternion operator *(Quaternion b, Quaternion a)
{
Quaternion c;
c.x = a.s * b.x + a.x * b.s + a.y * b.z - a.z * b.y;
c.y = a.s * b.y + a.y * b.s + a.z * b.x - a.x * b.z;
c.z = a.s * b.z + a.z * b.s + a.x * b.y - a.y * b.x;
c.s = a.s * b.s - a.x * b.x - a.y * b.y - a.z * b.z;
return c;
}
}
[Serializable]
public class list
{
private object[] m_data;
public list(params object[] args)
{
m_data = args;
}
public int Length
{
get
{
if (m_data == null)
m_data=new Object[0];
return m_data.Length;
}
}
public int Size
{
get
{
if (m_data == null)
m_data=new Object[0];
int size = 0;
foreach (Object o in m_data)
{
if (o is LSL_Types.LSLInteger)
size += 4;
else if (o is LSL_Types.LSLFloat)
size += 8;
else if (o is LSL_Types.LSLString)
size += ((LSL_Types.LSLString)o).m_string.Length;
else if (o is LSL_Types.key)
size += ((LSL_Types.key)o).value.Length;
else if (o is LSL_Types.Vector3)
size += 32;
else if (o is LSL_Types.Quaternion)
size += 64;
else if (o is int)
size += 4;
else if (o is string)
size += ((string)o).Length;
else if (o is float)
size += 8;
else if (o is double)
size += 16;
else
throw new Exception("Unknown type in List.Size: " + o.GetType().ToString());
}
return size;
}
}
public object[] Data
{
get {
if (m_data == null)
m_data=new Object[0];
return m_data;
}
set {m_data = value; }
}
///
/// Obtain LSL type from an index.
///
///
/// This is needed because LSL lists allow for multiple types, and safely
/// iterating in them requires a type check.
///
///
///
public Type GetLSLListItemType(int itemIndex)
{
return m_data[itemIndex].GetType();
}
///
/// Obtain float from an index.
///
///
/// For cases where implicit conversions would apply if items
/// were not in a list (e.g. integer to float, but not float
/// to integer) functions check for alternate types so as to
/// down-cast from Object to the correct type.
/// Note: no checks for item index being valid are performed
///
///
///
public LSL_Types.LSLFloat GetLSLFloatItem(int itemIndex)
{
if (m_data[itemIndex] is LSL_Types.LSLInteger)
{
return (LSL_Types.LSLInteger)m_data[itemIndex];
}
else if (m_data[itemIndex] is Int32)
{
return new LSL_Types.LSLFloat((int)m_data[itemIndex]);
}
else if (m_data[itemIndex] is float)
{
return new LSL_Types.LSLFloat((float)m_data[itemIndex]);
}
else if (m_data[itemIndex] is Double)
{
return new LSL_Types.LSLFloat((Double)m_data[itemIndex]);
}
else if (m_data[itemIndex] is LSL_Types.LSLString)
{
return new LSL_Types.LSLFloat(m_data[itemIndex].ToString());
}
else
{
return (LSL_Types.LSLFloat)m_data[itemIndex];
}
}
public LSL_Types.LSLString GetLSLStringItem(int itemIndex)
{
if (m_data[itemIndex] is LSL_Types.key)
{
return (LSL_Types.key)m_data[itemIndex];
}
else
{
return new LSL_Types.LSLString(m_data[itemIndex].ToString());
}
}
public LSL_Types.LSLInteger GetLSLIntegerItem(int itemIndex)
{
if (m_data[itemIndex] is LSL_Types.LSLInteger)
return (LSL_Types.LSLInteger)m_data[itemIndex];
if (m_data[itemIndex] is LSL_Types.LSLFloat)
return new LSLInteger((int)m_data[itemIndex]);
else if (m_data[itemIndex] is Int32)
return new LSLInteger((int)m_data[itemIndex]);
else if (m_data[itemIndex] is LSL_Types.LSLString)
return new LSLInteger(m_data[itemIndex].ToString());
else
throw new InvalidCastException(string.Format(
"{0} expected but {1} given",
typeof(LSL_Types.LSLInteger).Name,
m_data[itemIndex] != null ?
m_data[itemIndex].GetType().Name : "null"));
}
public LSL_Types.Vector3 GetVector3Item(int itemIndex)
{
if (m_data[itemIndex] is LSL_Types.Vector3)
{
return (LSL_Types.Vector3)m_data[itemIndex];
}
else if(m_data[itemIndex] is OpenMetaverse.Vector3)
{
return new LSL_Types.Vector3(
(OpenMetaverse.Vector3)m_data[itemIndex]);
}
else
{
throw new InvalidCastException(string.Format(
"{0} expected but {1} given",
typeof(LSL_Types.Vector3).Name,
m_data[itemIndex] != null ?
m_data[itemIndex].GetType().Name : "null"));
}
}
public LSL_Types.Quaternion GetQuaternionItem(int itemIndex)
{
if (m_data[itemIndex] is LSL_Types.Quaternion)
{
return (LSL_Types.Quaternion)m_data[itemIndex];
}
else if(m_data[itemIndex] is OpenMetaverse.Quaternion)
{
return new LSL_Types.Quaternion(
(OpenMetaverse.Quaternion)m_data[itemIndex]);
}
else
{
throw new InvalidCastException(string.Format(
"{0} expected but {1} given",
typeof(LSL_Types.Quaternion).Name,
m_data[itemIndex] != null ?
m_data[itemIndex].GetType().Name : "null"));
}
}
public LSL_Types.key GetKeyItem(int itemIndex)
{
return (LSL_Types.key)m_data[itemIndex];
}
public static list operator +(list a, list b)
{
object[] tmp;
tmp = new object[a.Length + b.Length];
a.Data.CopyTo(tmp, 0);
b.Data.CopyTo(tmp, a.Length);
return new list(tmp);
}
private void ExtendAndAdd(object o)
{
Array.Resize(ref m_data, Length + 1);
m_data.SetValue(o, Length - 1);
}
public static list operator +(list a, LSLString s)
{
a.ExtendAndAdd(s);
return a;
}
public static list operator +(list a, LSLInteger i)
{
a.ExtendAndAdd(i);
return a;
}
public static list operator +(list a, LSLFloat d)
{
a.ExtendAndAdd(d);
return a;
}
public static bool operator ==(list a, list b)
{
int la = -1;
int lb = -1;
try { la = a.Length; }
catch (NullReferenceException) { }
try { lb = b.Length; }
catch (NullReferenceException) { }
return la == lb;
}
public static bool operator !=(list a, list b)
{
int la = -1;
int lb = -1;
try { la = a.Length; }
catch (NullReferenceException) { }
try {lb = b.Length;}
catch (NullReferenceException) { }
return la != lb;
}
public void Add(object o)
{
object[] tmp;
tmp = new object[m_data.Length + 1];
m_data.CopyTo(tmp, 0);
tmp[m_data.Length] = o;
m_data = tmp;
}
public bool Contains(object o)
{
bool ret = false;
foreach (object i in Data)
{
if (i == o)
{
ret = true;
break;
}
}
return ret;
}
public list DeleteSublist(int start, int end)
{
// Not an easy one
// If start <= end, remove that part
// if either is negative, count from the end of the array
// if the resulting start > end, remove all BUT that part
Object[] ret;
if (start < 0)
start=m_data.Length+start;
if (start < 0)
start=0;
if (end < 0)
end=m_data.Length+end;
if (end < 0)
end=0;
if (start > end)
{
if (end >= m_data.Length)
return new list(new Object[0]);
if (start >= m_data.Length)
start=m_data.Length-1;
return GetSublist(end, start);
}
// start >= 0 && end >= 0 here
if (start >= m_data.Length)
{
ret=new Object[m_data.Length];
Array.Copy(m_data, 0, ret, 0, m_data.Length);
return new list(ret);
}
if (end >= m_data.Length)
end=m_data.Length-1;
// now, this makes the math easier
int remove=end+1-start;
ret=new Object[m_data.Length-remove];
if (ret.Length == 0)
return new list(ret);
int src;
int dest=0;
for (src = 0; src < m_data.Length; src++)
{
if (src < start || src > end)
ret[dest++]=m_data[src];
}
return new list(ret);
}
public list GetSublist(int start, int end)
{
object[] ret;
// Take care of neg start or end's
// NOTE that either index may still be negative after
// adding the length, so we must take additional
// measures to protect against this. Note also that
// after normalisation the negative indices are no
// longer relative to the end of the list.
if (start < 0)
{
start = m_data.Length + start;
}
if (end < 0)
{
end = m_data.Length + end;
}
// The conventional case is start <= end
// NOTE that the case of an empty list is
// dealt with by the initial test. Start
// less than end is taken to be the most
// common case.
if (start <= end)
{
// Start sublist beyond length
// Also deals with start AND end still negative
if (start >= m_data.Length || end < 0)
{
return new list();
}
// Sublist extends beyond the end of the supplied list
if (end >= m_data.Length)
{
end = m_data.Length - 1;
}
// Sublist still starts before the beginning of the list
if (start < 0)
{
start = 0;
}
ret = new object[end - start + 1];
Array.Copy(m_data, start, ret, 0, end - start + 1);
return new list(ret);
}
// Deal with the segmented case: 0->end + start->EOL
else
{
list result = null;
// If end is negative, then prefix list is empty
if (end < 0)
{
result = new list();
// If start is still negative, then the whole of
// the existing list is returned. This case is
// only admitted if end is also still negative.
if (start < 0)
{
return this;
}
}
else
{
result = GetSublist(0,end);
}
// If start is outside of list, then just return
// the prefix, whatever it is.
if (start >= m_data.Length)
{
return result;
}
return result + GetSublist(start, Data.Length);
}
}
private static int compare(object left, object right, int ascending)
{
if (!left.GetType().Equals(right.GetType()))
{
// unequal types are always "equal" for comparison purposes.
// this way, the bubble sort will never swap them, and we'll
// get that feathered effect we're looking for
return 0;
}
int ret = 0;
if (left is key)
{
key l = (key)left;
key r = (key)right;
ret = String.CompareOrdinal(l.value, r.value);
}
else if (left is LSLString)
{
LSLString l = (LSLString)left;
LSLString r = (LSLString)right;
ret = String.CompareOrdinal(l.m_string, r.m_string);
}
else if (left is LSLInteger)
{
LSLInteger l = (LSLInteger)left;
LSLInteger r = (LSLInteger)right;
ret = Math.Sign(l.value - r.value);
}
else if (left is LSLFloat)
{
LSLFloat l = (LSLFloat)left;
LSLFloat r = (LSLFloat)right;
ret = Math.Sign(l.value - r.value);
}
else if (left is Vector3)
{
Vector3 l = (Vector3)left;
Vector3 r = (Vector3)right;
ret = Math.Sign(Vector3.Mag(l) - Vector3.Mag(r));
}
else if (left is Quaternion)
{
Quaternion l = (Quaternion)left;
Quaternion r = (Quaternion)right;
ret = Math.Sign(Quaternion.Mag(l) - Quaternion.Mag(r));
}
if (ascending == 0)
{
ret = 0 - ret;
}
return ret;
}
class HomogeneousComparer : IComparer
{
public HomogeneousComparer()
{
}
public int Compare(object lhs, object rhs)
{
return compare(lhs, rhs, 1);
}
}
public list Sort(int stride, int ascending)
{
if (Data.Length == 0)
return new list(); // Don't even bother
object[] ret = new object[Data.Length];
Array.Copy(Data, 0, ret, 0, Data.Length);
if (stride <= 0)
{
stride = 1;
}
// we can optimize here in the case where stride == 1 and the list
// consists of homogeneous types
if (stride == 1)
{
bool homogeneous = true;
int index;
for (index = 1; index < Data.Length; index++)
{
if (!Data[0].GetType().Equals(Data[index].GetType()))
{
homogeneous = false;
break;
}
}
if (homogeneous)
{
Array.Sort(ret, new HomogeneousComparer());
if (ascending == 0)
{
Array.Reverse(ret);
}
return new list(ret);
}
}
// Because of the desired type specific feathered sorting behavior
// requried by the spec, we MUST use a non-optimized bubble sort here.
// Anything else will give you the incorrect behavior.
// begin bubble sort...
int i;
int j;
int k;
int n = Data.Length;
for (i = 0; i < (n-stride); i += stride)
{
for (j = i + stride; j < n; j += stride)
{
if (compare(ret[i], ret[j], ascending) > 0)
{
for (k = 0; k < stride; k++)
{
object tmp = ret[i + k];
ret[i + k] = ret[j + k];
ret[j + k] = tmp;
}
}
}
}
// end bubble sort
return new list(ret);
}
#region CSV Methods
public static list FromCSV(string csv)
{
return new list(csv.Split(','));
}
public string ToCSV()
{
string ret = "";
foreach (object o in this.Data)
{
if (ret == "")
{
ret = o.ToString();
}
else
{
ret = ret + ", " + o.ToString();
}
}
return ret;
}
private string ToSoup()
{
string output;
output = String.Empty;
if (m_data.Length == 0)
{
return String.Empty;
}
foreach (object o in m_data)
{
output = output + o.ToString();
}
return output;
}
public static explicit operator String(list l)
{
return l.ToSoup();
}
public static explicit operator LSLString(list l)
{
return new LSLString(l.ToSoup());
}
public override string ToString()
{
return ToSoup();
}
#endregion
#region Statistic Methods
public double Min()
{
double minimum = double.PositiveInfinity;
double entry;
for (int i = 0; i < Data.Length; i++)
{
if (double.TryParse(Data[i].ToString(), NumberStyles.Float, Culture.NumberFormatInfo, out entry))
{
if (entry < minimum) minimum = entry;
}
}
return minimum;
}
public double Max()
{
double maximum = double.NegativeInfinity;
double entry;
for (int i = 0; i < Data.Length; i++)
{
if (double.TryParse(Data[i].ToString(), NumberStyles.Float, Culture.NumberFormatInfo, out entry))
{
if (entry > maximum) maximum = entry;
}
}
return maximum;
}
public double Range()
{
return (this.Max() / this.Min());
}
public int NumericLength()
{
int count = 0;
double entry;
for (int i = 0; i < Data.Length; i++)
{
if (double.TryParse(Data[i].ToString(), NumberStyles.Float, Culture.NumberFormatInfo, out entry))
{
count++;
}
}
return count;
}
public static list ToDoubleList(list src)
{
list ret = new list();
double entry;
for (int i = 0; i < src.Data.Length; i++)
{
if (double.TryParse(src.Data[i].ToString(), NumberStyles.Float, Culture.NumberFormatInfo, out entry))
{
ret.Add(entry);
}
}
return ret;
}
public double Sum()
{
double sum = 0;
double entry;
for (int i = 0; i < Data.Length; i++)
{
if (double.TryParse(Data[i].ToString(), NumberStyles.Float, Culture.NumberFormatInfo, out entry))
{
sum = sum + entry;
}
}
return sum;
}
public double SumSqrs()
{
double sum = 0;
double entry;
for (int i = 0; i < Data.Length; i++)
{
if (double.TryParse(Data[i].ToString(), NumberStyles.Float, Culture.NumberFormatInfo, out entry))
{
sum = sum + Math.Pow(entry, 2);
}
}
return sum;
}
public double Mean()
{
return (this.Sum() / this.NumericLength());
}
public void NumericSort()
{
IComparer Numeric = new NumericComparer();
Array.Sort(Data, Numeric);
}
public void AlphaSort()
{
IComparer Alpha = new AlphaCompare();
Array.Sort(Data, Alpha);
}
public double Median()
{
return Qi(0.5);
}
public double GeometricMean()
{
double ret = 1.0;
list nums = ToDoubleList(this);
for (int i = 0; i < nums.Data.Length; i++)
{
ret *= (double)nums.Data[i];
}
return Math.Exp(Math.Log(ret) / (double)nums.Data.Length);
}
public double HarmonicMean()
{
double ret = 0.0;
list nums = ToDoubleList(this);
for (int i = 0; i < nums.Data.Length; i++)
{
ret += 1.0 / (double)nums.Data[i];
}
return ((double)nums.Data.Length / ret);
}
public double Variance()
{
double s = 0;
list num = ToDoubleList(this);
for (int i = 0; i < num.Data.Length; i++)
{
s += Math.Pow((double)num.Data[i], 2);
}
return (s - num.Data.Length * Math.Pow(num.Mean(), 2)) / (num.Data.Length - 1);
}
public double StdDev()
{
return Math.Sqrt(this.Variance());
}
public double Qi(double i)
{
list j = this;
j.NumericSort();
if (Math.Ceiling(this.Length * i) == this.Length * i)
{
return (double)((double)j.Data[(int)(this.Length * i - 1)] + (double)j.Data[(int)(this.Length * i)]) / 2;
}
else
{
return (double)j.Data[((int)(Math.Ceiling(this.Length * i))) - 1];
}
}
#endregion
public string ToPrettyString()
{
string output;
if (m_data.Length == 0)
{
return "[]";
}
output = "[";
foreach (object o in m_data)
{
if (o is String)
{
output = output + "\"" + o + "\", ";
}
else
{
output = output + o.ToString() + ", ";
}
}
output = output.Substring(0, output.Length - 2);
output = output + "]";
return output;
}
public class AlphaCompare : IComparer
{
int IComparer.Compare(object x, object y)
{
return string.Compare(x.ToString(), y.ToString());
}
}
public class NumericComparer : IComparer
{
int IComparer.Compare(object x, object y)
{
double a;
double b;
if (!double.TryParse(x.ToString(), NumberStyles.Float, Culture.NumberFormatInfo, out a))
{
a = 0.0;
}
if (!double.TryParse(y.ToString(), NumberStyles.Float, Culture.NumberFormatInfo, out b))
{
b = 0.0;
}
if (a < b)
{
return -1;
}
else if (a == b)
{
return 0;
}
else
{
return 1;
}
}
}
public override bool Equals(object o)
{
if (!(o is list))
return false;
return Data.Length == ((list)o).Data.Length;
}
public override int GetHashCode()
{
return Data.GetHashCode();
}
}
//
// BELOW IS WORK IN PROGRESS... IT WILL CHANGE, SO DON'T USE YET! :)
//
public struct StringTest
{
// Our own little string
internal string actualString;
public static implicit operator bool(StringTest mString)
{
if (mString.actualString.Length == 0)
return true;
return false;
}
public override string ToString()
{
return actualString;
}
}
[Serializable]
public struct key
{
public string value;
#region Constructors
public key(string s)
{
value = s;
}
#endregion
#region Methods
static public bool Parse2Key(string s)
{
Regex isuuid = new Regex(@"^[0-9a-fA-F]{8}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{12}$", RegexOptions.Compiled);
if (isuuid.IsMatch(s))
{
return true;
}
else
{
return false;
}
}
#endregion
#region Operators
static public implicit operator Boolean(key k)
{
if (k.value.Length == 0)
{
return false;
}
if (k.value == "00000000-0000-0000-0000-000000000000")
{
return false;
}
Regex isuuid = new Regex(@"^[0-9a-fA-F]{8}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{12}$", RegexOptions.Compiled);
if (isuuid.IsMatch(k.value))
{
return true;
}
else
{
return false;
}
}
static public implicit operator key(string s)
{
return new key(s);
}
static public implicit operator String(key k)
{
return k.value;
}
static public implicit operator LSLString(key k)
{
return k.value;
}
public static bool operator ==(key k1, key k2)
{
return k1.value == k2.value;
}
public static bool operator !=(key k1, key k2)
{
return k1.value != k2.value;
}
#endregion
#region Overriders
public override bool Equals(object o)
{
return o.ToString() == value;
}
public override int GetHashCode()
{
return value.GetHashCode();
}
public override string ToString()
{
return value;
}
#endregion
}
[Serializable]
public struct LSLString
{
public string m_string;
#region Constructors
public LSLString(string s)
{
m_string = s;
}
public LSLString(double d)
{
string s = String.Format(Culture.FormatProvider, "{0:0.000000}", d);
m_string = s;
}
public LSLString(LSLFloat f)
{
string s = String.Format(Culture.FormatProvider, "{0:0.000000}", f.value);
m_string = s;
}
public LSLString(int i)
{
string s = String.Format("{0}", i);
m_string = s;
}
public LSLString(LSLInteger i) : this(i.value) {}
#endregion
#region Operators
static public implicit operator Boolean(LSLString s)
{
if (s.m_string.Length == 0)
{
return false;
}
else
{
return true;
}
}
static public implicit operator String(LSLString s)
{
return s.m_string;
}
static public implicit operator LSLString(string s)
{
return new LSLString(s);
}
public static string ToString(LSLString s)
{
return s.m_string;
}
public override string ToString()
{
return m_string;
}
public static bool operator ==(LSLString s1, string s2)
{
return s1.m_string == s2;
}
public static bool operator !=(LSLString s1, string s2)
{
return s1.m_string != s2;
}
public static LSLString operator +(LSLString s1, LSLString s2)
{
return new LSLString(s1.m_string + s2.m_string);
}
public static explicit operator double(LSLString s)
{
return new LSLFloat(s).value;
}
public static explicit operator LSLInteger(LSLString s)
{
return new LSLInteger(s.m_string);
}
public static explicit operator LSLString(double d)
{
return new LSLString(d);
}
static public explicit operator LSLString(int i)
{
return new LSLString(i);
}
public static explicit operator LSLString(LSLFloat f)
{
return new LSLString(f);
}
static public explicit operator LSLString(bool b)
{
if (b)
return new LSLString("1");
else
return new LSLString("0");
}
public static implicit operator Vector3(LSLString s)
{
return new Vector3(s.m_string);
}
public static implicit operator Quaternion(LSLString s)
{
return new Quaternion(s.m_string);
}
public static implicit operator LSLFloat(LSLString s)
{
return new LSLFloat(s);
}
public static implicit operator list(LSLString s)
{
return new list(new object[]{s});
}
#endregion
#region Overriders
public override bool Equals(object o)
{
return m_string == o.ToString();
}
public override int GetHashCode()
{
return m_string.GetHashCode();
}
#endregion
#region " Standard string functions "
//Clone,CompareTo,Contains
//CopyTo,EndsWith,Equals,GetEnumerator,GetHashCode,GetType,GetTypeCode
//IndexOf,IndexOfAny,Insert,IsNormalized,LastIndexOf,LastIndexOfAny
//Length,Normalize,PadLeft,PadRight,Remove,Replace,Split,StartsWith,Substring,ToCharArray,ToLowerInvariant
//ToString,ToUpper,ToUpperInvariant,Trim,TrimEnd,TrimStart
public bool Contains(string value) { return m_string.Contains(value); }
public int IndexOf(string value) { return m_string.IndexOf(value); }
public int Length { get { return m_string.Length; } }
#endregion
}
[Serializable]
public struct LSLInteger
{
public int value;
private static readonly Regex castRegex = new Regex(@"(^[ ]*0[xX][0-9A-Fa-f][0-9A-Fa-f]*)|(^[ ]*(-?|\+?)[0-9][0-9]*)");
#region Constructors
public LSLInteger(int i)
{
value = i;
}
public LSLInteger(uint i)
{
value = (int)i;
}
public LSLInteger(double d)
{
value = (int)d;
}
public LSLInteger(string s)
{
Match m = castRegex.Match(s);
string v = m.Groups[0].Value;
// Leading plus sign is allowed, but ignored
v = v.Replace("+", "");
if (v == String.Empty)
{
value = 0;
}
else
{
try
{
if (v.Contains("x") || v.Contains("X"))
{
value = int.Parse(v.Substring(2), System.Globalization.NumberStyles.HexNumber);
}
else
{
value = int.Parse(v, System.Globalization.NumberStyles.Integer);
}
}
catch (OverflowException)
{
value = -1;
}
}
}
#endregion
#region Operators
static public implicit operator int(LSLInteger i)
{
return i.value;
}
static public explicit operator uint(LSLInteger i)
{
return (uint)i.value;
}
static public explicit operator LSLString(LSLInteger i)
{
return new LSLString(i.ToString());
}
public static implicit operator list(LSLInteger i)
{
return new list(new object[] { i });
}
static public implicit operator Boolean(LSLInteger i)
{
if (i.value == 0)
{
return false;
}
else
{
return true;
}
}
static public implicit operator LSLInteger(int i)
{
return new LSLInteger(i);
}
static public explicit operator LSLInteger(string s)
{
return new LSLInteger(s);
}
static public implicit operator LSLInteger(uint u)
{
return new LSLInteger(u);
}
static public explicit operator LSLInteger(double d)
{
return new LSLInteger(d);
}
static public explicit operator LSLInteger(LSLFloat f)
{
return new LSLInteger(f.value);
}
static public implicit operator LSLInteger(bool b)
{
if (b)
return new LSLInteger(1);
else
return new LSLInteger(0);
}
static public LSLInteger operator ==(LSLInteger i1, LSLInteger i2)
{
bool ret = i1.value == i2.value;
return new LSLInteger((ret ? 1 : 0));
}
static public LSLInteger operator !=(LSLInteger i1, LSLInteger i2)
{
bool ret = i1.value != i2.value;
return new LSLInteger((ret ? 1 : 0));
}
static public LSLInteger operator <(LSLInteger i1, LSLInteger i2)
{
bool ret = i1.value < i2.value;
return new LSLInteger((ret ? 1 : 0));
}
static public LSLInteger operator <=(LSLInteger i1, LSLInteger i2)
{
bool ret = i1.value <= i2.value;
return new LSLInteger((ret ? 1 : 0));
}
static public LSLInteger operator >(LSLInteger i1, LSLInteger i2)
{
bool ret = i1.value > i2.value;
return new LSLInteger((ret ? 1 : 0));
}
static public LSLInteger operator >=(LSLInteger i1, LSLInteger i2)
{
bool ret = i1.value >= i2.value;
return new LSLInteger((ret ? 1 : 0));
}
static public LSLInteger operator +(LSLInteger i1, int i2)
{
return new LSLInteger(i1.value + i2);
}
static public LSLInteger operator -(LSLInteger i1, int i2)
{
return new LSLInteger(i1.value - i2);
}
static public LSLInteger operator *(LSLInteger i1, int i2)
{
return new LSLInteger(i1.value * i2);
}
static public LSLInteger operator /(LSLInteger i1, int i2)
{
return new LSLInteger(i1.value / i2);
}
// static public LSLFloat operator +(LSLInteger i1, double f)
// {
// return new LSLFloat((double)i1.value + f);
// }
//
// static public LSLFloat operator -(LSLInteger i1, double f)
// {
// return new LSLFloat((double)i1.value - f);
// }
//
// static public LSLFloat operator *(LSLInteger i1, double f)
// {
// return new LSLFloat((double)i1.value * f);
// }
//
// static public LSLFloat operator /(LSLInteger i1, double f)
// {
// return new LSLFloat((double)i1.value / f);
// }
static public LSLInteger operator -(LSLInteger i)
{
return new LSLInteger(-i.value);
}
static public LSLInteger operator ~(LSLInteger i)
{
return new LSLInteger(~i.value);
}
public override bool Equals(Object o)
{
if (!(o is LSLInteger))
{
if (o is int)
{
return value == (int)o;
}
else
{
return false;
}
}
return value == ((LSLInteger)o).value;
}
public override int GetHashCode()
{
return value;
}
static public LSLInteger operator &(LSLInteger i1, LSLInteger i2)
{
int ret = i1.value & i2.value;
return ret;
}
static public LSLInteger operator %(LSLInteger i1, LSLInteger i2)
{
int ret = i1.value % i2.value;
return ret;
}
static public LSLInteger operator |(LSLInteger i1, LSLInteger i2)
{
int ret = i1.value | i2.value;
return ret;
}
static public LSLInteger operator ^(LSLInteger i1, LSLInteger i2)
{
int ret = i1.value ^ i2.value;
return ret;
}
static public LSLInteger operator !(LSLInteger i1)
{
return i1.value == 0 ? 1 : 0;
}
public static LSLInteger operator ++(LSLInteger i)
{
i.value++;
return i;
}
public static LSLInteger operator --(LSLInteger i)
{
i.value--;
return i;
}
public static LSLInteger operator << (LSLInteger i, int s)
{
return i.value << s;
}
public static LSLInteger operator >> (LSLInteger i, int s)
{
return i.value >> s;
}
static public implicit operator System.Double(LSLInteger i)
{
return (double)i.value;
}
public static bool operator true(LSLInteger i)
{
return i.value != 0;
}
public static bool operator false(LSLInteger i)
{
return i.value == 0;
}
#endregion
#region Overriders
public override string ToString()
{
return this.value.ToString();
}
#endregion
}
[Serializable]
public struct LSLFloat
{
public double value;
#region Constructors
public LSLFloat(int i)
{
this.value = (double)i;
}
public LSLFloat(double d)
{
this.value = d;
}
public LSLFloat(string s)
{
Regex r = new Regex("^ *(\\+|-)?([0-9]+\\.?[0-9]*|\\.[0-9]+)([eE](\\+|-)?[0-9]+)?");
Match m = r.Match(s);
string v = m.Groups[0].Value;
v = v.Trim();
if (v == String.Empty || v == null)
v = "0.0";
else
if (!v.Contains(".") && !v.ToLower().Contains("e"))
v = v + ".0";
else
if (v.EndsWith("."))
v = v + "0";
this.value = double.Parse(v, System.Globalization.NumberStyles.Float, Culture.NumberFormatInfo);
}
#endregion
#region Operators
static public explicit operator float(LSLFloat f)
{
return (float)f.value;
}
static public explicit operator int(LSLFloat f)
{
return (int)f.value;
}
static public explicit operator uint(LSLFloat f)
{
return (uint) Math.Abs(f.value);
}
static public implicit operator Boolean(LSLFloat f)
{
if (f.value == 0.0)
{
return false;
}
else
{
return true;
}
}
static public implicit operator LSLFloat(int i)
{
return new LSLFloat(i);
}
static public implicit operator LSLFloat(LSLInteger i)
{
return new LSLFloat(i.value);
}
static public explicit operator LSLFloat(string s)
{
return new LSLFloat(s);
}
public static implicit operator list(LSLFloat f)
{
return new list(new object[] { f });
}
static public implicit operator LSLFloat(double d)
{
return new LSLFloat(d);
}
static public implicit operator LSLFloat(bool b)
{
if (b)
return new LSLFloat(1.0);
else
return new LSLFloat(0.0);
}
static public bool operator ==(LSLFloat f1, LSLFloat f2)
{
return f1.value == f2.value;
}
static public bool operator !=(LSLFloat f1, LSLFloat f2)
{
return f1.value != f2.value;
}
static public LSLFloat operator ++(LSLFloat f)
{
f.value++;
return f;
}
static public LSLFloat operator --(LSLFloat f)
{
f.value--;
return f;
}
static public LSLFloat operator +(LSLFloat f, int i)
{
return new LSLFloat(f.value + (double)i);
}
static public LSLFloat operator -(LSLFloat f, int i)
{
return new LSLFloat(f.value - (double)i);
}
static public LSLFloat operator *(LSLFloat f, int i)
{
return new LSLFloat(f.value * (double)i);
}
static public LSLFloat operator /(LSLFloat f, int i)
{
return new LSLFloat(f.value / (double)i);
}
static public LSLFloat operator +(LSLFloat lhs, LSLFloat rhs)
{
return new LSLFloat(lhs.value + rhs.value);
}
static public LSLFloat operator -(LSLFloat lhs, LSLFloat rhs)
{
return new LSLFloat(lhs.value - rhs.value);
}
static public LSLFloat operator *(LSLFloat lhs, LSLFloat rhs)
{
return new LSLFloat(lhs.value * rhs.value);
}
static public LSLFloat operator /(LSLFloat lhs, LSLFloat rhs)
{
return new LSLFloat(lhs.value / rhs.value);
}
static public LSLFloat operator -(LSLFloat f)
{
return new LSLFloat(-f.value);
}
static public implicit operator System.Double(LSLFloat f)
{
return f.value;
}
#endregion
#region Overriders
public override string ToString()
{
return String.Format(Culture.FormatProvider, "{0:0.000000}", this.value);
}
public override bool Equals(Object o)
{
if (!(o is LSLFloat))
return false;
return value == ((LSLFloat)o).value;
}
public override int GetHashCode()
{
return value.GetHashCode();
}
#endregion
}
}
}