using System; using System.Diagnostics; using System.Runtime.InteropServices; using Pgno = System.UInt32; using i64 = System.Int64; using u32 = System.UInt32; using BITVEC_TELEM = System.Byte; namespace Community.CsharpSqlite { public partial class Sqlite3 { /* ** 2008 February 16 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file implements an object that represents a fixed-length ** bitmap. Bits are numbered starting with 1. ** ** A bitmap is used to record which pages of a database file have been ** journalled during a transaction, or which pages have the "dont-write" ** property. Usually only a few pages are meet either condition. ** So the bitmap is usually sparse and has low cardinality. ** But sometimes (for example when during a DROP of a large table) most ** or all of the pages in a database can get journalled. In those cases, ** the bitmap becomes dense with high cardinality. The algorithm needs ** to handle both cases well. ** ** The size of the bitmap is fixed when the object is created. ** ** All bits are clear when the bitmap is created. Individual bits ** may be set or cleared one at a time. ** ** Test operations are about 100 times more common that set operations. ** Clear operations are exceedingly rare. There are usually between ** 5 and 500 set operations per Bitvec object, though the number of sets can ** sometimes grow into tens of thousands or larger. The size of the ** Bitvec object is the number of pages in the database file at the ** start of a transaction, and is thus usually less than a few thousand, ** but can be as large as 2 billion for a really big database. ************************************************************************* ** Included in SQLite3 port to C#-SQLite; 2008 Noah B Hart ** C#-SQLite is an independent reimplementation of the SQLite software library ** ** SQLITE_SOURCE_ID: 2010-08-23 18:52:01 42537b60566f288167f1b5864a5435986838e3a3 ** ************************************************************************* */ //#include "sqliteInt.h" /* Size of the Bitvec structure in bytes. */ static int BITVEC_SZ = 512; /* Round the union size down to the nearest pointer boundary, since that's how ** it will be aligned within the Bitvec struct. */ //#define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) static int BITVEC_USIZE = ( ( ( BITVEC_SZ - ( 3 * sizeof( u32 ) ) ) / 4 ) * 4 ); /* Type of the array "element" for the bitmap representation. ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. ** Setting this to the "natural word" size of your CPU may improve ** performance. */ //#define BITVEC_TELEM u8 //using BITVEC_TELEM = System.Byte; /* Size, in bits, of the bitmap element. */ //#define BITVEC_SZELEM 8 const int BITVEC_SZELEM = 8; /* Number of elements in a bitmap array. */ //#define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) static int BITVEC_NELEM = (int)( BITVEC_USIZE / sizeof( BITVEC_TELEM ) ); /* Number of bits in the bitmap array. */ //#define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) static int BITVEC_NBIT = ( BITVEC_NELEM * BITVEC_SZELEM ); /* Number of u32 values in hash table. */ //#define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) static u32 BITVEC_NINT = (u32)( BITVEC_USIZE / sizeof( u32 ) ); /* Maximum number of entries in hash table before ** sub-dividing and re-hashing. */ //#define BITVEC_MXHASH (BITVEC_NINT/2) static int BITVEC_MXHASH = (int)( BITVEC_NINT / 2 ); /* Hashing function for the aHash representation. ** Empirical testing showed that the *37 multiplier ** (an arbitrary prime)in the hash function provided ** no fewer collisions than the no-op *1. */ //#define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) static u32 BITVEC_HASH( u32 X ) { return (u32)( ( ( X ) * 1 ) % BITVEC_NINT ); } static int BITVEC_NPTR = (int)( BITVEC_USIZE / 4 );//sizeof(Bitvec *)); /* ** A bitmap is an instance of the following structure. ** ** This bitmap records the existence of zero or more bits ** with values between 1 and iSize, inclusive. ** ** There are three possible representations of the bitmap. ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight ** bitmap. The least significant bit is bit 1. ** ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is ** a hash table that will hold up to BITVEC_MXHASH distinct values. ** ** Otherwise, the value i is redirected into one of BITVEC_NPTR ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap ** handles up to iDivisor separate values of i. apSub[0] holds ** values between 1 and iDivisor. apSub[1] holds values between ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized ** to hold deal with values between 1 and iDivisor. */ public class _u { public BITVEC_TELEM[] aBitmap = new byte[BITVEC_NELEM]; /* Bitmap representation */ public u32[] aHash = new u32[BITVEC_NINT]; /* Hash table representation */ public Bitvec[] apSub = new Bitvec[BITVEC_NPTR]; /* Recursive representation */ } public class Bitvec { public u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ public u32 nSet; /* Number of bits that are set - only valid for aHash ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, ** this would be 125. */ public u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ /* Should >=0 for apSub element. */ /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ /* For a BITVEC_SZ of 512, this would be 34,359,739. */ public _u u = new _u(); public static implicit operator bool( Bitvec b ) { return ( b != null ); } }; /* ** Create a new bitmap object able to handle bits between 0 and iSize, ** inclusive. Return a pointer to the new object. Return NULL if ** malloc fails. */ static Bitvec sqlite3BitvecCreate( u32 iSize ) { Bitvec p; //Debug.Assert( sizeof(p)==BITVEC_SZ ); p = new Bitvec();//sqlite3MallocZero( sizeof(p) ); if ( p != null ) { p.iSize = iSize; } return p; } /* ** Check to see if the i-th bit is set. Return true or false. ** If p is NULL (if the bitmap has not been created) or if ** i is out of range, then return false. */ static int sqlite3BitvecTest( Bitvec p, u32 i ) { if ( p == null || i == 0 ) return 0; if ( i > p.iSize ) return 0; i--; while ( p.iDivisor != 0 ) { u32 bin = i / p.iDivisor; i = i % p.iDivisor; p = p.u.apSub[bin]; if ( null == p ) { return 0; } } if ( p.iSize <= BITVEC_NBIT ) { return ( ( p.u.aBitmap[i / BITVEC_SZELEM] & ( 1 << (int)( i & ( BITVEC_SZELEM - 1 ) ) ) ) != 0 ) ? 1 : 0; } else { u32 h = BITVEC_HASH( i++ ); while ( p.u.aHash[h] != 0 ) { if ( p.u.aHash[h] == i ) return 1; h = ( h + 1 ) % BITVEC_NINT; } return 0; } } /* ** Set the i-th bit. Return 0 on success and an error code if ** anything goes wrong. ** ** This routine might cause sub-bitmaps to be allocated. Failing ** to get the memory needed to hold the sub-bitmap is the only ** that can go wrong with an insert, assuming p and i are valid. ** ** The calling function must ensure that p is a valid Bitvec object ** and that the value for "i" is within range of the Bitvec object. ** Otherwise the behavior is undefined. */ static int sqlite3BitvecSet( Bitvec p, u32 i ) { u32 h; if ( p == null ) return SQLITE_OK; Debug.Assert( i > 0 ); Debug.Assert( i <= p.iSize ); i--; while ( ( p.iSize > BITVEC_NBIT ) && p.iDivisor != 0 ) { u32 bin = i / p.iDivisor; i = i % p.iDivisor; if ( p.u.apSub[bin] == null ) { p.u.apSub[bin] = sqlite3BitvecCreate( p.iDivisor ); //if ( p.u.apSub[bin] == null ) // return SQLITE_NOMEM; } p = p.u.apSub[bin]; } if ( p.iSize <= BITVEC_NBIT ) { p.u.aBitmap[i / BITVEC_SZELEM] |= (byte)( 1 << (int)( i & ( BITVEC_SZELEM - 1 ) ) ); return SQLITE_OK; } h = BITVEC_HASH( i++ ); /* if there wasn't a hash collision, and this doesn't */ /* completely fill the hash, then just add it without */ /* worring about sub-dividing and re-hashing. */ if ( 0 == p.u.aHash[h] ) { if ( p.nSet < ( BITVEC_NINT - 1 ) ) { goto bitvec_set_end; } else { goto bitvec_set_rehash; } } /* there was a collision, check to see if it's already */ /* in hash, if not, try to find a spot for it */ do { if ( p.u.aHash[h] == i ) return SQLITE_OK; h++; if ( h >= BITVEC_NINT ) h = 0; } while ( p.u.aHash[h] != 0 ); /* we didn't find it in the hash. h points to the first */ /* available free spot. check to see if this is going to */ /* make our hash too "full". */ bitvec_set_rehash: if ( p.nSet >= BITVEC_MXHASH ) { u32 j; int rc; u32[] aiValues = new u32[BITVEC_NINT];// = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); //if ( aiValues == null ) //{ // return SQLITE_NOMEM; //} //else { Buffer.BlockCopy( p.u.aHash, 0, aiValues, 0, aiValues.Length * ( sizeof( u32 ) ) );// memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); p.u.apSub = new Bitvec[BITVEC_NPTR];//memset(p->u.apSub, 0, sizeof(p->u.apSub)); p.iDivisor = (u32)( ( p.iSize + BITVEC_NPTR - 1 ) / BITVEC_NPTR ); rc = sqlite3BitvecSet( p, i ); for ( j = 0; j < BITVEC_NINT; j++ ) { if ( aiValues[j] != 0 ) rc |= sqlite3BitvecSet( p, aiValues[j] ); } //sqlite3StackFree( null, aiValues ); return rc; } } bitvec_set_end: p.nSet++; p.u.aHash[h] = i; return SQLITE_OK; } /* ** Clear the i-th bit. ** ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage ** that BitvecClear can use to rebuilt its hash table. */ static void sqlite3BitvecClear( Bitvec p, u32 i, u32[] pBuf ) { if ( p == null ) return; Debug.Assert( i > 0 ); i--; while ( p.iDivisor != 0 ) { u32 bin = i / p.iDivisor; i = i % p.iDivisor; p = p.u.apSub[bin]; if ( null == p ) { return; } } if ( p.iSize <= BITVEC_NBIT ) { p.u.aBitmap[i / BITVEC_SZELEM] &= (byte)~( ( 1 << (int)( i & ( BITVEC_SZELEM - 1 ) ) ) ); } else { u32 j; u32[] aiValues = pBuf; Array.Copy( p.u.aHash, aiValues, p.u.aHash.Length );//memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); p.u.aHash = new u32[aiValues.Length];// memset(p->u.aHash, 0, sizeof(p->u.aHash)); p.nSet = 0; for ( j = 0; j < BITVEC_NINT; j++ ) { if ( aiValues[j] != 0 && aiValues[j] != ( i + 1 ) ) { u32 h = BITVEC_HASH( aiValues[j] - 1 ); p.nSet++; while ( p.u.aHash[h] != 0 ) { h++; if ( h >= BITVEC_NINT ) h = 0; } p.u.aHash[h] = aiValues[j]; } } } } /* ** Destroy a bitmap object. Reclaim all memory used. */ static void sqlite3BitvecDestroy( ref Bitvec p ) { if ( p == null ) return; if ( p.iDivisor != 0 ) { u32 i; for ( i = 0; i < BITVEC_NPTR; i++ ) { sqlite3BitvecDestroy( ref p.u.apSub[i] ); } } //sqlite3_free( ref p ); } /* ** Return the value of the iSize parameter specified when Bitvec *p ** was created. */ static u32 sqlite3BitvecSize( Bitvec p ) { return p.iSize; } #if !SQLITE_OMIT_BUILTIN_TEST /* ** Let V[] be an array of unsigned characters sufficient to hold ** up to N bits. Let I be an integer between 0 and N. 0<=I>3] |= (1<<(I&7)) static void SETBIT( byte[] V, int I ) { V[I >> 3] |= (byte)( 1 << ( I & 7 ) ); } //#define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) static void CLEARBIT( byte[] V, int I ) { V[I >> 3] &= (byte)~( 1 << ( I & 7 ) ); } //#define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 static int TESTBIT( byte[] V, int I ) { return ( V[I >> 3] & ( 1 << ( I & 7 ) ) ) != 0 ? 1 : 0; } /* ** This routine runs an extensive test of the Bitvec code. ** ** The input is an array of integers that acts as a program ** to test the Bitvec. The integers are opcodes followed ** by 0, 1, or 3 operands, depending on the opcode. Another ** opcode follows immediately after the last operand. ** ** There are 6 opcodes numbered from 0 through 5. 0 is the ** "halt" opcode and causes the test to end. ** ** 0 Halt and return the number of errors ** 1 N S X Set N bits beginning with S and incrementing by X ** 2 N S X Clear N bits beginning with S and incrementing by X ** 3 N Set N randomly chosen bits ** 4 N Clear N randomly chosen bits ** 5 N S X Set N bits from S increment X in array only, not in bitvec ** ** The opcodes 1 through 4 perform set and clear operations are performed ** on both a Bitvec object and on a linear array of bits obtained from malloc. ** Opcode 5 works on the linear array only, not on the Bitvec. ** Opcode 5 is used to deliberately induce a fault in order to ** confirm that error detection works. ** ** At the conclusion of the test the linear array is compared ** against the Bitvec object. If there are any differences, ** an error is returned. If they are the same, zero is returned. ** ** If a memory allocation error occurs, return -1. */ static int sqlite3BitvecBuiltinTest( u32 sz, int[] aOp ) { Bitvec pBitvec = null; byte[] pV = null; int rc = -1; int i, nx, pc, op; u32[] pTmpSpace; /* Allocate the Bitvec to be tested and a linear array of ** bits to act as the reference */ pBitvec = sqlite3BitvecCreate( sz ); pV = sqlite3_malloc( (int)( sz + 7 ) / 8 + 1 ); pTmpSpace = new u32[BITVEC_SZ];// sqlite3_malloc( BITVEC_SZ ); if ( pBitvec == null || pV == null || pTmpSpace == null ) goto bitvec_end; Array.Clear( pV, 0, (int)( sz + 7 ) / 8 + 1 );// memset( pV, 0, ( sz + 7 ) / 8 + 1 ); /* NULL pBitvec tests */ sqlite3BitvecSet( null, (u32)1 ); sqlite3BitvecClear( null, 1, pTmpSpace ); /* Run the program */ pc = 0; while ( ( op = aOp[pc] ) != 0 ) { switch ( op ) { case 1: case 2: case 5: { nx = 4; i = aOp[pc + 2] - 1; aOp[pc + 2] += aOp[pc + 3]; break; } case 3: case 4: default: { nx = 2; i64 i64Temp = 0; sqlite3_randomness( sizeof( i64 ), ref i64Temp ); i = (int)i64Temp; break; } } if ( ( --aOp[pc + 1] ) > 0 ) nx = 0; pc += nx; i = (int)( ( i & 0x7fffffff ) % sz ); if ( ( op & 1 ) != 0 ) { SETBIT( pV, ( i + 1 ) ); if ( op != 5 ) { if ( sqlite3BitvecSet( pBitvec, (u32)i + 1 ) != 0 ) goto bitvec_end; } } else { CLEARBIT( pV, ( i + 1 ) ); sqlite3BitvecClear( pBitvec, (u32)i + 1, pTmpSpace ); } } /* Test to make sure the linear array exactly matches the ** Bitvec object. Start with the assumption that they do ** match (rc==0). Change rc to non-zero if a discrepancy ** is found. */ rc = sqlite3BitvecTest( null, 0 ) + sqlite3BitvecTest( pBitvec, sz + 1 ) + sqlite3BitvecTest( pBitvec, 0 ) + (int)( sqlite3BitvecSize( pBitvec ) - sz ); for ( i = 1; i <= sz; i++ ) { if ( ( TESTBIT( pV, i ) ) != sqlite3BitvecTest( pBitvec, (u32)i ) ) { rc = i; break; } } /* Free allocated structure */ bitvec_end: //sqlite3_free( ref pTmpSpace ); //sqlite3_free( ref pV ); sqlite3BitvecDestroy( ref pBitvec ); return rc; } #endif //* SQLITE_OMIT_BUILTIN_TEST */ } }