using System.Diagnostics; using System.IO; using System.Text; using FILE = System.IO.TextWriter; using i16 = System.Int16; using i32 = System.Int32; using i64 = System.Int64; using u8 = System.Byte; using u16 = System.UInt16; using u32 = System.UInt32; using u64 = System.UInt64; using Pgno = System.UInt32; #if !SQLITE_MAX_VARIABLE_NUMBER using ynVar = System.Int16; #else using ynVar = System.Int32; #endif /* ** The yDbMask datatype for the bitmask of all attached databases. */ #if SQLITE_MAX_ATTACHED//>30 // typedef sqlite3_uint64 yDbMask; using yDbMask = System.Int64; #else // typedef unsigned int yDbMask; using yDbMask = System.Int32; #endif namespace Community.CsharpSqlite { using Op = Sqlite3.VdbeOp; using sqlite3_stmt = Sqlite3.Vdbe; using sqlite3_value = Sqlite3.Mem; using System; public partial class Sqlite3 { /* ** 2003 September 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used for creating, destroying, and populating ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior ** to version 2.8.7, all this code was combined into the vdbe.c source file. ** But that file was getting too big so this subroutines were split out. ************************************************************************* ** Included in SQLite3 port to C#-SQLite; 2008 Noah B Hart ** C#-SQLite is an independent reimplementation of the SQLite software library ** ** SQLITE_SOURCE_ID: 2011-06-23 19:49:22 4374b7e83ea0a3fbc3691f9c0c936272862f32f2 ** ************************************************************************* */ //#include "sqliteInt.h" //#include "vdbeInt.h" /* ** When debugging the code generator in a symbolic debugger, one can ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed ** as they are added to the instruction stream. */ #if SQLITE_DEBUG static bool sqlite3VdbeAddopTrace = false; #endif /* ** Create a new virtual database engine. */ static Vdbe sqlite3VdbeCreate( sqlite3 db ) { Vdbe p; p = new Vdbe();// sqlite3DbMallocZero(db, Vdbe).Length; if ( p == null ) return null; p.db = db; if ( db.pVdbe != null ) { db.pVdbe.pPrev = p; } p.pNext = db.pVdbe; p.pPrev = null; db.pVdbe = p; p.magic = VDBE_MAGIC_INIT; return p; } /* ** Remember the SQL string for a prepared statement. */ static void sqlite3VdbeSetSql( Vdbe p, string z, int n, int isPrepareV2 ) { Debug.Assert( isPrepareV2 == 1 || isPrepareV2 == 0 ); if ( p == null ) return; #if SQLITE_OMIT_TRACE if( 0==isPrepareV2 ) return; #endif Debug.Assert( p.zSql.Length == 0 ); p.zSql = z.Substring( 0, n );// sqlite3DbStrNDup(p.db, z, n); p.isPrepareV2 = isPrepareV2 != 0; } /* ** Return the SQL associated with a prepared statement */ static string sqlite3_sql( sqlite3_stmt pStmt ) { Vdbe p = (Vdbe)pStmt; return ( p != null && p.isPrepareV2 ? p.zSql : string.Empty ); } /* ** Swap all content between two VDBE structures. */ static void sqlite3VdbeSwap( Vdbe pA, Vdbe pB ) { Vdbe tmp = new Vdbe(); Vdbe pTmp = new Vdbe(); string zTmp; pA.CopyTo( tmp ); pB.CopyTo( pA ); tmp.CopyTo( pB ); pTmp = pA.pNext; pA.pNext = pB.pNext; pB.pNext = pTmp; pTmp = pA.pPrev; pA.pPrev = pB.pPrev; pB.pPrev = pTmp; zTmp = pA.zSql; pA.zSql = pB.zSql; pB.zSql = zTmp; pB.isPrepareV2 = pA.isPrepareV2; } #if SQLITE_DEBUG /* ** Turn tracing on or off */ static void sqlite3VdbeTrace( Vdbe p, FILE trace ) { p.trace = trace; } #endif /* ** Resize the Vdbe.aOp array so that it is at least one op larger than ** it was. ** ** If an out-of-memory error occurs while resizing the array, return ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain ** unchanged (this is so that any opcodes already allocated can be ** correctly deallocated along with the rest of the Vdbe). */ static int growOpArray( Vdbe p ) { //VdbeOp pNew; int nNew = ( p.nOpAlloc != 0 ? p.nOpAlloc * 2 : 1024 / 4 );//(int)(1024/sizeof(Op))); // pNew = sqlite3DbRealloc( p.db, p.aOp, nNew * sizeof( Op ) ); //if (pNew != null) //{ // p.nOpAlloc = sqlite3DbMallocSize(p.db, pNew)/sizeof(Op); // p.aOp = pNew; //} p.nOpAlloc = nNew; if ( p.aOp == null ) p.aOp = new VdbeOp[nNew]; else Array.Resize( ref p.aOp, nNew ); return ( p.aOp != null ? SQLITE_OK : SQLITE_NOMEM ); // return (pNew ? SQLITE_OK : SQLITE_NOMEM); } /* ** Add a new instruction to the list of instructions current in the ** VDBE. Return the address of the new instruction. ** ** Parameters: ** ** p Pointer to the VDBE ** ** op The opcode for this instruction ** ** p1, p2, p3 Operands ** ** Use the sqlite3VdbeResolveLabel() function to fix an address and ** the sqlite3VdbeChangeP4() function to change the value of the P4 ** operand. */ static int sqlite3VdbeAddOp3( Vdbe p, int op, int p1, int p2, int p3 ) { int i; VdbeOp pOp; i = p.nOp; Debug.Assert( p.magic == VDBE_MAGIC_INIT ); Debug.Assert( op > 0 && op < 0xff ); if ( p.nOpAlloc <= i ) { if ( growOpArray( p ) != 0 ) { return 1; } } p.nOp++; if ( p.aOp[i] == null ) p.aOp[i] = new VdbeOp(); pOp = p.aOp[i]; pOp.opcode = (u8)op; pOp.p5 = 0; pOp.p1 = p1; pOp.p2 = p2; pOp.p3 = p3; pOp.p4.p = null; pOp.p4type = P4_NOTUSED; #if SQLITE_DEBUG pOp.zComment = null; if ( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp( null, i, p.aOp[i] ); #endif #if VDBE_PROFILE pOp.cycles = 0; pOp.cnt = 0; #endif return i; } static int sqlite3VdbeAddOp0( Vdbe p, int op ) { return sqlite3VdbeAddOp3( p, op, 0, 0, 0 ); } static int sqlite3VdbeAddOp1( Vdbe p, int op, int p1 ) { return sqlite3VdbeAddOp3( p, op, p1, 0, 0 ); } static int sqlite3VdbeAddOp2( Vdbe p, int op, int p1, bool b2 ) { return sqlite3VdbeAddOp2( p, op, p1, (int)( b2 ? 1 : 0 ) ); } static int sqlite3VdbeAddOp2( Vdbe p, int op, int p1, int p2 ) { return sqlite3VdbeAddOp3( p, op, p1, p2, 0 ); } /* ** Add an opcode that includes the p4 value as a pointer. */ //P4_INT32 static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, i32 pP4, int p4type ) { union_p4 _p4 = new union_p4(); _p4.i = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //char static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, char pP4, int p4type ) { union_p4 _p4 = new union_p4(); _p4.z = pP4.ToString(); int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //StringBuilder static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, StringBuilder pP4, int p4type ) { // Debug.Assert( pP4 != null ); union_p4 _p4 = new union_p4(); _p4.z = pP4.ToString(); int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //String static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, string pP4, int p4type ) { // Debug.Assert( pP4 != null ); union_p4 _p4 = new union_p4(); _p4.z = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, byte[] pP4, int p4type ) { Debug.Assert( op == OP_Null || pP4 != null ); union_p4 _p4 = new union_p4(); _p4.z = Encoding.UTF8.GetString( pP4, 0, pP4.Length ); int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //P4_INTARRAY static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, int[] pP4, int p4type ) { Debug.Assert( pP4 != null ); union_p4 _p4 = new union_p4(); _p4.ai = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //P4_INT64 static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, i64 pP4, int p4type ) { union_p4 _p4 = new union_p4(); _p4.pI64 = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //DOUBLE (REAL) static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, double pP4, int p4type ) { union_p4 _p4 = new union_p4(); _p4.pReal = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //FUNCDEF static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, FuncDef pP4, int p4type ) { union_p4 _p4 = new union_p4(); _p4.pFunc = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //CollSeq static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, CollSeq pP4, int p4type ) { union_p4 _p4 = new union_p4(); _p4.pColl = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } //KeyInfo static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, KeyInfo pP4, int p4type ) { union_p4 _p4 = new union_p4(); _p4.pKeyInfo = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } #if !SQLITE_OMIT_VIRTUALTABLE //VTable static int sqlite3VdbeAddOp4( Vdbe p, int op, int p1, int p2, int p3, VTable pP4, int p4type ) { Debug.Assert( pP4 != null ); union_p4 _p4 = new union_p4(); _p4.pVtab = pP4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, p4type ); return addr; } #endif // static int sqlite3VdbeAddOp4( // Vdbe p, /* Add the opcode to this VM */ // int op, /* The new opcode */ // int p1, /* The P1 operand */ // int p2, /* The P2 operand */ // int p3, /* The P3 operand */ // union_p4 _p4, /* The P4 operand */ // int p4type /* P4 operand type */ //) // { // int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); // sqlite3VdbeChangeP4(p, addr, _p4, p4type); // return addr; // } /* ** Add an OP_ParseSchema opcode. This routine is broken out from ** sqlite3VdbeAddOp4() since it needs to also local all btrees. ** ** The zWhere string must have been obtained from sqlite3_malloc(). ** This routine will take ownership of the allocated memory. */ static void sqlite3VdbeAddParseSchemaOp( Vdbe p, int iDb, string zWhere ) { int j; int addr = sqlite3VdbeAddOp3( p, OP_ParseSchema, iDb, 0, 0 ); sqlite3VdbeChangeP4( p, addr, zWhere, P4_DYNAMIC ); for ( j = 0; j < p.db.nDb; j++ ) sqlite3VdbeUsesBtree( p, j ); } /* ** Add an opcode that includes the p4 value as an integer. */ static int sqlite3VdbeAddOp4Int( Vdbe p, /* Add the opcode to this VM */ int op, /* The new opcode */ int p1, /* The P1 operand */ int p2, /* The P2 operand */ int p3, /* The P3 operand */ int p4 /* The P4 operand as an integer */ ) { union_p4 _p4 = new union_p4(); _p4.i = p4; int addr = sqlite3VdbeAddOp3( p, op, p1, p2, p3 ); sqlite3VdbeChangeP4( p, addr, _p4, P4_INT32 ); return addr; } /* ** Create a new symbolic label for an instruction that has yet to be ** coded. The symbolic label is really just a negative number. The ** label can be used as the P2 value of an operation. Later, when ** the label is resolved to a specific address, the VDBE will scan ** through its operation list and change all values of P2 which match ** the label into the resolved address. ** ** The VDBE knows that a P2 value is a label because labels are ** always negative and P2 values are suppose to be non-negative. ** Hence, a negative P2 value is a label that has yet to be resolved. ** ** Zero is returned if a malloc() fails. */ static int sqlite3VdbeMakeLabel( Vdbe p ) { int i; i = p.nLabel++; Debug.Assert( p.magic == VDBE_MAGIC_INIT ); if ( i >= p.nLabelAlloc ) { int n = p.nLabelAlloc == 0 ? 15 : p.nLabelAlloc * 2 + 5; if ( p.aLabel == null ) p.aLabel = sqlite3Malloc( p.aLabel, n ); else Array.Resize( ref p.aLabel, n ); //p.aLabel = sqlite3DbReallocOrFree(p.db, p.aLabel, // n*sizeof(p.aLabel[0])); p.nLabelAlloc = p.aLabel.Length;//sqlite3DbMallocSize(p.db, p.aLabel)/sizeof(p.aLabel[0]); } if ( p.aLabel != null ) { p.aLabel[i] = -1; } return -1 - i; } /* ** Resolve label "x" to be the address of the next instruction to ** be inserted. The parameter "x" must have been obtained from ** a prior call to sqlite3VdbeMakeLabel(). */ static void sqlite3VdbeResolveLabel( Vdbe p, int x ) { int j = -1 - x; Debug.Assert( p.magic == VDBE_MAGIC_INIT ); Debug.Assert( j >= 0 && j < p.nLabel ); if ( p.aLabel != null ) { p.aLabel[j] = p.nOp; } } /* ** Mark the VDBE as one that can only be run one time. */ static void sqlite3VdbeRunOnlyOnce( Vdbe p ) { p.runOnlyOnce = 1; } #if SQLITE_DEBUG //* sqlite3AssertMayAbort() logic */ /* ** The following type and function are used to iterate through all opcodes ** in a Vdbe main program and each of the sub-programs (triggers) it may ** invoke directly or indirectly. It should be used as follows: ** ** Op *pOp; ** VdbeOpIter sIter; ** ** memset(&sIter, 0, sizeof(sIter)); ** sIter.v = v; // v is of type Vdbe* ** while( (pOp = opIterNext(&sIter)) ){ ** // Do something with pOp ** } ** sqlite3DbFree(v->db, sIter.apSub); ** */ //typedef struct VdbeOpIter VdbeOpIter; public class VdbeOpIter { public Vdbe v; /* Vdbe to iterate through the opcodes of */ public SubProgram[] apSub; /* Array of subprograms */ public int nSub; /* Number of entries in apSub */ public int iAddr; /* Address of next instruction to return */ public int iSub; /* 0 = main program, 1 = first sub-program etc. */ }; static Op opIterNext( VdbeOpIter p ) { Vdbe v = p.v; Op pRet = null; Op[] aOp; int nOp; if ( p.iSub <= p.nSub ) { if ( p.iSub == 0 ) { aOp = v.aOp; nOp = v.nOp; } else { aOp = p.apSub[p.iSub - 1].aOp; nOp = p.apSub[p.iSub - 1].nOp; } Debug.Assert( p.iAddr < nOp ); pRet = aOp[p.iAddr]; p.iAddr++; if ( p.iAddr == nOp ) { p.iSub++; p.iAddr = 0; } if ( pRet.p4type == P4_SUBPROGRAM ) { //int nByte = p.nSub + 1 ) * sizeof( SubProgram* ); int j; for ( j = 0; j < p.nSub; j++ ) { if ( p.apSub[j] == pRet.p4.pProgram ) break; } if ( j == p.nSub ) { Array.Resize( ref p.apSub, p.nSub + 1 );/// sqlite3DbReallocOrFree( v.db, p.apSub, nByte ); //if( null==p.apSub ){ // pRet = null; //}else{ p.apSub[p.nSub++] = pRet.p4.pProgram; //} } } } return pRet; } /* ** Check if the program stored in the VM associated with pParse may ** throw an ABORT exception (causing the statement, but not entire transaction ** to be rolled back). This condition is true if the main program or any ** sub-programs contains any of the following: ** ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. ** * OP_Destroy ** * OP_VUpdate ** * OP_VRename ** * OP_FkCounter with P2==0 (immediate foreign key constraint) ** ** Then check that the value of Parse.mayAbort is true if an ** ABORT may be thrown, or false otherwise. Return true if it does ** match, or false otherwise. This function is intended to be used as ** part of an assert statement in the compiler. Similar to: ** ** Debug.Assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); */ static int sqlite3VdbeAssertMayAbort( Vdbe v, int mayAbort ) { int hasAbort = 0; Op pOp; VdbeOpIter sIter; sIter = new VdbeOpIter();// memset( &sIter, 0, sizeof( sIter ) ); sIter.v = v; while ( ( pOp = opIterNext( sIter ) ) != null ) { int opcode = pOp.opcode; if ( opcode == OP_Destroy || opcode == OP_VUpdate || opcode == OP_VRename #if !SQLITE_OMIT_FOREIGN_KEY || ( opcode == OP_FkCounter && pOp.p1 == 0 && pOp.p2 == 1 ) #endif || ( ( opcode == OP_Halt || opcode == OP_HaltIfNull ) && ( pOp.p1 == SQLITE_CONSTRAINT && pOp.p2 == OE_Abort ) ) ) { hasAbort = 1; break; } } sIter.apSub = null;// sqlite3DbFree( v.db, sIter.apSub ); /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. ** If malloc failed, then the while() loop above may not have iterated ** through all opcodes and hasAbort may be set incorrectly. Return ** true for this case to prevent the Debug.Assert() in the callers frame ** from failing. */ return ( hasAbort == mayAbort ) ? 1 : 0;//v.db.mallocFailed !=0|| hasAbort==mayAbort ); } #endif //* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ /* ** Loop through the program looking for P2 values that are negative ** on jump instructions. Each such value is a label. Resolve the ** label by setting the P2 value to its correct non-zero value. ** ** This routine is called once after all opcodes have been inserted. ** ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. ** ** The Op.opflags field is set on all opcodes. */ static void resolveP2Values( Vdbe p, ref int pMaxFuncArgs ) { int i; int nMaxArgs = pMaxFuncArgs; Op pOp; int[] aLabel = p.aLabel; p.readOnly = true; for ( i = 0; i < p.nOp; i++ )// for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++) { pOp = p.aOp[i]; u8 opcode = pOp.opcode; pOp.opflags = (u8)sqlite3OpcodeProperty[opcode]; if ( opcode == OP_Function || opcode == OP_AggStep ) { if ( pOp.p5 > nMaxArgs ) nMaxArgs = pOp.p5; } else if ( ( opcode == OP_Transaction && pOp.p2 != 0 ) || opcode == OP_Vacuum ) { p.readOnly = false; #if !SQLITE_OMIT_VIRTUALTABLE } else if ( opcode == OP_VUpdate ) { if ( pOp.p2 > nMaxArgs ) nMaxArgs = pOp.p2; } else if ( opcode == OP_VFilter ) { int n; Debug.Assert( p.nOp - i >= 3 ); Debug.Assert( p.aOp[i - 1].opcode == OP_Integer );//pOp[-1].opcode==OP_Integer ); n = p.aOp[i - 1].p1;//pOp[-1].p1; if ( n > nMaxArgs ) nMaxArgs = n; #endif } if ( ( pOp.opflags & OPFLG_JUMP ) != 0 && pOp.p2 < 0 ) { Debug.Assert( -1 - pOp.p2 < p.nLabel ); pOp.p2 = aLabel[-1 - pOp.p2]; } } sqlite3DbFree( p.db, ref p.aLabel ); pMaxFuncArgs = nMaxArgs; } /* ** Return the address of the next instruction to be inserted. */ static int sqlite3VdbeCurrentAddr( Vdbe p ) { Debug.Assert( p.magic == VDBE_MAGIC_INIT ); return p.nOp; } /* ** This function returns a pointer to the array of opcodes associated with ** the Vdbe passed as the first argument. It is the callers responsibility ** to arrange for the returned array to be eventually freed using the ** vdbeFreeOpArray() function. ** ** Before returning, *pnOp is set to the number of entries in the returned ** array. Also, *pnMaxArg is set to the larger of its current value and ** the number of entries in the Vdbe.apArg[] array required to execute the ** returned program. */ static VdbeOp[] sqlite3VdbeTakeOpArray( Vdbe p, ref int pnOp, ref int pnMaxArg ) { VdbeOp[] aOp = p.aOp; Debug.Assert( aOp != null );// && 0==p.db.mallocFailed ); /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ Debug.Assert( p.btreeMask == 0 ); resolveP2Values( p, ref pnMaxArg ); pnOp = p.nOp; p.aOp = null; return aOp; } /* ** Add a whole list of operations to the operation stack. Return the ** address of the first operation added. */ static int sqlite3VdbeAddOpList( Vdbe p, int nOp, VdbeOpList[] aOp ) { int addr; Debug.Assert( p.magic == VDBE_MAGIC_INIT ); if ( p.nOp + nOp > p.nOpAlloc && growOpArray( p ) != 0 ) { return 0; } addr = p.nOp; if ( ALWAYS( nOp > 0 ) ) { int i; VdbeOpList pIn; for ( i = 0; i < nOp; i++ ) { pIn = aOp[i]; int p2 = pIn.p2; if ( p.aOp[i + addr] == null ) p.aOp[i + addr] = new VdbeOp(); VdbeOp pOut = p.aOp[i + addr]; pOut.opcode = pIn.opcode; pOut.p1 = pIn.p1; if ( p2 < 0 && ( sqlite3OpcodeProperty[pOut.opcode] & OPFLG_JUMP ) != 0 ) { pOut.p2 = addr + ( -1 - p2 );// ADDR(p2); } else { pOut.p2 = p2; } pOut.p3 = pIn.p3; pOut.p4type = P4_NOTUSED; pOut.p4.p = null; pOut.p5 = 0; #if SQLITE_DEBUG pOut.zComment = null; if ( sqlite3VdbeAddopTrace ) { sqlite3VdbePrintOp( null, i + addr, p.aOp[i + addr] ); } #endif } p.nOp += nOp; } return addr; } /* ** Change the value of the P1 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. */ static void sqlite3VdbeChangeP1( Vdbe p, int addr, int val ) { Debug.Assert( p != null ); Debug.Assert( addr >= 0 ); if ( p.nOp > addr ) { p.aOp[addr].p1 = val; } } /* ** Change the value of the P2 operand for a specific instruction. ** This routine is useful for setting a jump destination. */ static void sqlite3VdbeChangeP2( Vdbe p, int addr, int val ) { Debug.Assert( p != null ); Debug.Assert( addr >= 0 ); if ( p.nOp > addr ) { p.aOp[addr].p2 = val; } } /* ** Change the value of the P3 operand for a specific instruction. */ static void sqlite3VdbeChangeP3( Vdbe p, int addr, int val ) { Debug.Assert( p != null ); Debug.Assert( addr >= 0 ); if ( p.nOp > addr ) { p.aOp[addr].p3 = val; } } /* ** Change the value of the P5 operand for the most recently ** added operation. */ static void sqlite3VdbeChangeP5( Vdbe p, u8 val ) { Debug.Assert( p != null ); if ( p.aOp != null ) { Debug.Assert( p.nOp > 0 ); p.aOp[p.nOp - 1].p5 = val; } } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ static void sqlite3VdbeJumpHere( Vdbe p, int addr ) { Debug.Assert( addr >= 0 ); sqlite3VdbeChangeP2( p, addr, p.nOp ); } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephermal, then do nothing. */ static void freeEphemeralFunction( sqlite3 db, FuncDef pDef ) { if ( ALWAYS( pDef ) && ( pDef.flags & SQLITE_FUNC_EPHEM ) != 0 ) { pDef = null; sqlite3DbFree( db, ref pDef ); } } //static void vdbeFreeOpArray(sqlite3 *, Op *, int); /* ** Delete a P4 value if necessary. */ static void freeP4( sqlite3 db, int p4type, object p4 ) { if ( p4 != null ) { switch ( p4type ) { case P4_REAL: case P4_INT64: case P4_DYNAMIC: case P4_KEYINFO: case P4_INTARRAY: case P4_KEYINFO_HANDOFF: { sqlite3DbFree( db, ref p4 ); break; } case P4_MPRINTF: { if ( db.pnBytesFreed == 0 ) p4 = null;// sqlite3_free( ref p4 ); break; } case P4_VDBEFUNC: { VdbeFunc pVdbeFunc = (VdbeFunc)p4; freeEphemeralFunction( db, pVdbeFunc.pFunc ); if ( db.pnBytesFreed == 0 ) sqlite3VdbeDeleteAuxData( pVdbeFunc, 0 ); sqlite3DbFree( db, ref pVdbeFunc ); break; } case P4_FUNCDEF: { freeEphemeralFunction( db, (FuncDef)p4 ); break; } case P4_MEM: { if ( db.pnBytesFreed == 0 ) { p4 = null;// sqlite3ValueFree(ref (sqlite3_value)p4); } else { Mem p = (Mem)p4; //sqlite3DbFree( db, ref p.zMalloc ); sqlite3DbFree( db, ref p ); } break; } case P4_VTAB: { if ( db.pnBytesFreed == 0 ) sqlite3VtabUnlock( (VTable)p4 ); break; } } } } /* ** Free the space allocated for aOp and any p4 values allocated for the ** opcodes contained within. If aOp is not NULL it is assumed to contain ** nOp entries. */ static void vdbeFreeOpArray( sqlite3 db, ref Op[] aOp, int nOp ) { if ( aOp != null ) { //Op pOp; // for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ // freeP4(db, pOp.p4type, pOp.p4.p); //#if SQLITE_DEBUG // sqlite3DbFree(db, ref pOp.zComment); //#endif // } // } // sqlite3DbFree(db, aOp); aOp = null; } } /* ** Link the SubProgram object passed as the second argument into the linked ** list at Vdbe.pSubProgram. This list is used to delete all sub-program ** objects when the VM is no longer required. */ static void sqlite3VdbeLinkSubProgram( Vdbe pVdbe, SubProgram p ) { p.pNext = pVdbe.pProgram; pVdbe.pProgram = p; } /* ** Change N opcodes starting at addr to No-ops. */ static void sqlite3VdbeChangeToNoop( Vdbe p, int addr, int N ) { if ( p.aOp != null ) { sqlite3 db = p.db; while ( N-- > 0 ) { VdbeOp pOp = p.aOp[addr + N]; freeP4( db, pOp.p4type, pOp.p4.p ); pOp = p.aOp[addr + N] = new VdbeOp();//memset(pOp, 0, sizeof(pOp[0])); pOp.opcode = OP_Noop; //pOp++; } } } /* ** Change the value of the P4 operand for a specific instruction. ** This routine is useful when a large program is loaded from a ** static array using sqlite3VdbeAddOpList but we want to make a ** few minor changes to the program. ** ** If n>=0 then the P4 operand is dynamic, meaning that a copy of ** the string is made into memory obtained from sqlite3Malloc(). ** A value of n==0 means copy bytes of zP4 up to and including the ** first null byte. If n>0 then copy n+1 bytes of zP4. ** ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. ** A copy is made of the KeyInfo structure into memory obtained from ** sqlite3Malloc, to be freed when the Vdbe is finalized. ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure ** stored in memory that the caller has obtained from sqlite3Malloc. The ** caller should not free the allocation, it will be freed when the Vdbe is ** finalized. ** ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points ** to a string or structure that is guaranteed to exist for the lifetime of ** the Vdbe. In these cases we can just copy the pointer. ** ** If addr<0 then change P4 on the most recently inserted instruction. */ //P4_COLLSEQ static void sqlite3VdbeChangeP4( Vdbe p, int addr, CollSeq pColl, int n ) { union_p4 _p4 = new union_p4(); _p4.pColl = pColl; sqlite3VdbeChangeP4( p, addr, _p4, n ); } //P4_FUNCDEF static void sqlite3VdbeChangeP4( Vdbe p, int addr, FuncDef pFunc, int n ) { union_p4 _p4 = new union_p4(); _p4.pFunc = pFunc; sqlite3VdbeChangeP4( p, addr, _p4, n ); } //P4_INT32 static void sqlite3VdbeChangeP4( Vdbe p, int addr, int i32n, int n ) { union_p4 _p4 = new union_p4(); _p4.i = i32n; sqlite3VdbeChangeP4( p, addr, _p4, n ); } //P4_KEYINFO static void sqlite3VdbeChangeP4( Vdbe p, int addr, KeyInfo pKeyInfo, int n ) { union_p4 _p4 = new union_p4(); _p4.pKeyInfo = pKeyInfo; sqlite3VdbeChangeP4( p, addr, _p4, n ); } //CHAR static void sqlite3VdbeChangeP4( Vdbe p, int addr, char c, int n ) { union_p4 _p4 = new union_p4(); _p4.z = c.ToString(); sqlite3VdbeChangeP4( p, addr, _p4, n ); } //MEM static void sqlite3VdbeChangeP4( Vdbe p, int addr, Mem m, int n ) { union_p4 _p4 = new union_p4(); _p4.pMem = m; sqlite3VdbeChangeP4( p, addr, _p4, n ); } //STRING //STRING + Type static void sqlite3VdbeChangeP4( Vdbe p, int addr, string z, dxDel P4_Type ) { union_p4 _p4 = new union_p4(); _p4.z = z; sqlite3VdbeChangeP4( p, addr, _p4, P4_DYNAMIC ); } //SUBPROGRAM static void sqlite3VdbeChangeP4( Vdbe p, int addr, SubProgram pProgram, int n ) { union_p4 _p4 = new union_p4(); _p4.pProgram = pProgram; sqlite3VdbeChangeP4( p, addr, _p4, n ); } static void sqlite3VdbeChangeP4( Vdbe p, int addr, string z, int n ) { union_p4 _p4 = new union_p4(); if ( n > 0 && n <= z.Length ) _p4.z = z.Substring( 0, n ); else _p4.z = z; sqlite3VdbeChangeP4( p, addr, _p4, n ); } static void sqlite3VdbeChangeP4( Vdbe p, int addr, union_p4 _p4, int n ) { Op pOp; sqlite3 db; Debug.Assert( p != null ); db = p.db; Debug.Assert( p.magic == VDBE_MAGIC_INIT ); if ( p.aOp == null /*|| db.mallocFailed != 0 */) { if ( n != P4_KEYINFO && n != P4_VTAB ) { freeP4( db, n, _p4 ); } return; } Debug.Assert( p.nOp > 0 ); Debug.Assert( addr < p.nOp ); if ( addr < 0 ) { addr = p.nOp - 1; } pOp = p.aOp[addr]; freeP4( db, pOp.p4type, pOp.p4.p ); pOp.p4.p = null; if ( n == P4_INT32 ) { /* Note: this cast is safe, because the origin data point was an int ** that was cast to a (string ). */ pOp.p4.i = _p4.i; // SQLITE_PTR_TO_INT(zP4); pOp.p4type = P4_INT32; } else if ( n == P4_INT64 ) { pOp.p4.pI64 = _p4.pI64; pOp.p4type = n; } else if ( n == P4_REAL ) { pOp.p4.pReal = _p4.pReal; pOp.p4type = n; } else if ( _p4 == null ) { pOp.p4.p = null; pOp.p4type = P4_NOTUSED; } else if ( n == P4_KEYINFO ) { ////int nField = _p4.pKeyInfo.nField; ////int nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo.aColl[0]) + nField; KeyInfo pKeyInfo = new KeyInfo();//sqlite3DbMallocRaw(0, nByte); pOp.p4.pKeyInfo = pKeyInfo; if ( pKeyInfo != null ) { //u8 *aSortOrder; // memcpy((char)pKeyInfo, zP4, nByte - nField); //aSortOrder = pKeyInfo.aSortOrder; //if( aSortOrder ){ // pKeyInfo.aSortOrder = (unsigned char)&pKeyInfo.aColl[nField]; // memcpy(pKeyInfo.aSortOrder, aSortOrder, nField); //} pKeyInfo = _p4.pKeyInfo.Copy(); pOp.p4type = P4_KEYINFO; } else { //p.db.mallocFailed = 1; pOp.p4type = P4_NOTUSED; } pOp.p4.pKeyInfo = _p4.pKeyInfo; pOp.p4type = P4_KEYINFO; } else if ( n == P4_KEYINFO_HANDOFF || n == P4_KEYINFO_STATIC ) { pOp.p4.pKeyInfo = _p4.pKeyInfo; pOp.p4type = P4_KEYINFO; } else if ( n == P4_FUNCDEF ) { pOp.p4.pFunc = _p4.pFunc; pOp.p4type = P4_FUNCDEF; } else if ( n == P4_COLLSEQ ) { pOp.p4.pColl = _p4.pColl; pOp.p4type = P4_COLLSEQ; } else if ( n == P4_DYNAMIC || n == P4_STATIC || n == P4_MPRINTF ) { pOp.p4.z = _p4.z; pOp.p4type = P4_DYNAMIC; } else if ( n == P4_MEM ) { pOp.p4.pMem = _p4.pMem; pOp.p4type = P4_MEM; } else if ( n == P4_INTARRAY ) { pOp.p4.ai = _p4.ai; pOp.p4type = P4_INTARRAY; } else if ( n == P4_SUBPROGRAM ) { pOp.p4.pProgram = _p4.pProgram; pOp.p4type = P4_SUBPROGRAM; } else if ( n == P4_VTAB ) { pOp.p4.pVtab = _p4.pVtab; pOp.p4type = P4_VTAB; sqlite3VtabLock( _p4.pVtab ); Debug.Assert( ( _p4.pVtab ).db == p.db ); } else if ( n < 0 ) { pOp.p4.p = _p4.p; pOp.p4type = n; } else { //if (n == 0) n = n = sqlite3Strlen30(zP4); pOp.p4.z = _p4.z;// sqlite3DbStrNDup(p.db, zP4, n); pOp.p4type = P4_DYNAMIC; } } #if !NDEBUG /* ** Change the comment on the the most recently coded instruction. Or ** insert a No-op and add the comment to that new instruction. This ** makes the code easier to read during debugging. None of this happens ** in a production build. */ static void sqlite3VdbeComment( Vdbe p, string zFormat, params object[] ap ) { if ( null == p ) return; // va_list ap; lock ( lock_va_list ) { Debug.Assert( p.nOp > 0 || p.aOp == null ); Debug.Assert( p.aOp == null || p.aOp[p.nOp - 1].zComment == null /* || p.db.mallocFailed != 0 */); if ( p.nOp != 0 ) { string pz;// = p.aOp[p.nOp-1].zComment; va_start( ap, zFormat ); //sqlite3DbFree(db, ref pz); pz = sqlite3VMPrintf( p.db, zFormat, ap ); p.aOp[p.nOp - 1].zComment = pz; va_end( ref ap ); } } } static void sqlite3VdbeNoopComment( Vdbe p, string zFormat, params object[] ap ) { if ( null == p ) return; //va_list ap; lock ( lock_va_list ) { sqlite3VdbeAddOp0( p, OP_Noop ); Debug.Assert( p.nOp > 0 || p.aOp == null ); Debug.Assert( p.aOp == null || p.aOp[p.nOp - 1].zComment == null /* || p.db.mallocFailed != 0 */); if ( p.nOp != 0 ) { string pz; // = p.aOp[p.nOp - 1].zComment; va_start( ap, zFormat ); //sqlite3DbFree(db,ref pz); pz = sqlite3VMPrintf( p.db, zFormat, ap ); p.aOp[p.nOp - 1].zComment = pz; va_end( ref ap ); } } } #else #endif //* NDEBUG */ /* ** Return the opcode for a given address. If the address is -1, then ** return the most recently inserted opcode. ** ** If a memory allocation error has occurred prior to the calling of this ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode ** is readable but not writable, though it is cast to a writable value. ** The return of a dummy opcode allows the call to continue functioning ** after a OOM fault without having to check to see if the return from ** this routine is a valid pointer. But because the dummy.opcode is 0, ** dummy will never be written to. This is verified by code inspection and ** by running with Valgrind. ** ** About the #if SQLITE_OMIT_TRACE: Normally, this routine is never called ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE, ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as ** a new VDBE is created. So we are free to set addr to p->nOp-1 without ** having to double-check to make sure that the result is non-negative. But ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to ** check the value of p->nOp-1 before continuing. */ const VdbeOp dummy = null; /* Ignore the MSVC warning about no initializer */ static VdbeOp sqlite3VdbeGetOp( Vdbe p, int addr ) { /* C89 specifies that the constant "dummy" will be initialized to all ** zeros, which is correct. MSVC generates a warning, nevertheless. */ Debug.Assert( p.magic == VDBE_MAGIC_INIT ); if ( addr < 0 ) { #if SQLITE_OMIT_TRACE if( p.nOp==0 ) return dummy; #endif addr = p.nOp - 1; } Debug.Assert( ( addr >= 0 && addr < p.nOp ) /* || p.db.mallocFailed != 0 */); //if ( p.db.mallocFailed != 0 ) //{ // return dummy; //} //else { return p.aOp[addr]; } } #if !SQLITE_OMIT_EXPLAIN || !NDEBUG || VDBE_PROFILE || SQLITE_DEBUG /* ** Compute a string that describes the P4 parameter for an opcode. ** Use zTemp for any required temporary buffer space. */ static StringBuilder zTemp = new StringBuilder( 100 ); static string displayP4( Op pOp, string zBuffer, int nTemp ) { zTemp.Length = 0; Debug.Assert( nTemp >= 20 ); switch ( pOp.p4type ) { case P4_KEYINFO_STATIC: case P4_KEYINFO: { int i, j; KeyInfo pKeyInfo = pOp.p4.pKeyInfo; sqlite3_snprintf( nTemp, zTemp, "keyinfo(%d", pKeyInfo.nField ); i = sqlite3Strlen30( zTemp ); for ( j = 0; j < pKeyInfo.nField; j++ ) { CollSeq pColl = pKeyInfo.aColl[j]; if ( pColl != null ) { int n = sqlite3Strlen30( pColl.zName ); if ( i + n > nTemp ) { zTemp.Append( ",..." ); // memcpy( &zTemp[i], ",...", 4 ); break; } zTemp.Append( "," );// zTemp[i++] = ','; if ( pKeyInfo.aSortOrder != null && pKeyInfo.aSortOrder[j] != 0 ) { zTemp.Append( "-" );// zTemp[i++] = '-'; } zTemp.Append( pColl.zName );// memcpy( &zTemp[i], pColl.zName, n + 1 ); i += n; } else if ( i + 4 < nTemp ) { zTemp.Append( ",nil" );// memcpy( &zTemp[i], ",nil", 4 ); i += 4; } } zTemp.Append( ")" );// zTemp[i++] = ')'; //zTemp[i] = 0; Debug.Assert( i < nTemp ); break; } case P4_COLLSEQ: { CollSeq pColl = pOp.p4.pColl; sqlite3_snprintf( nTemp, zTemp, "collseq(%.20s)", ( pColl != null ? pColl.zName : "null" ) ); break; } case P4_FUNCDEF: { FuncDef pDef = pOp.p4.pFunc; sqlite3_snprintf( nTemp, zTemp, "%s(%d)", pDef.zName, pDef.nArg ); break; } case P4_INT64: { sqlite3_snprintf( nTemp, zTemp, "%lld", pOp.p4.pI64 ); break; } case P4_INT32: { sqlite3_snprintf( nTemp, zTemp, "%d", pOp.p4.i ); break; } case P4_REAL: { sqlite3_snprintf( nTemp, zTemp, "%.16g", pOp.p4.pReal ); break; } case P4_MEM: { Mem pMem = pOp.p4.pMem; Debug.Assert( ( pMem.flags & MEM_Null ) == 0 ); if ( ( pMem.flags & MEM_Str ) != 0 ) { zTemp.Append( pMem.z ); } else if ( ( pMem.flags & MEM_Int ) != 0 ) { sqlite3_snprintf( nTemp, zTemp, "%lld", pMem.u.i ); } else if ( ( pMem.flags & MEM_Real ) != 0 ) { sqlite3_snprintf( nTemp, zTemp, "%.16g", pMem.r ); } else { Debug.Assert( ( pMem.flags & MEM_Blob ) != 0 ); zTemp = new StringBuilder( "(blob)" ); } break; } #if !SQLITE_OMIT_VIRTUALTABLE case P4_VTAB: { sqlite3_vtab pVtab = pOp.p4.pVtab.pVtab; sqlite3_snprintf( nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab.pModule ); break; } #endif case P4_INTARRAY: { sqlite3_snprintf( nTemp, zTemp, "intarray" ); break; } case P4_SUBPROGRAM: { sqlite3_snprintf( nTemp, zTemp, "program" ); break; } default: { if ( pOp.p4.z != null ) zTemp.Append( pOp.p4.z ); break; } } Debug.Assert( zTemp != null ); return zTemp.ToString(); } #endif /* ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. ** ** The prepared statements need to know in advance the complete set of ** attached databases that they will be using. A mask of these databases ** is maintained in p->btreeMask and is used for locking and other purposes. */ static void sqlite3VdbeUsesBtree( Vdbe p, int i ) { Debug.Assert( i >= 0 && i < p.db.nDb && i < (int)sizeof( yDbMask ) * 8 ); Debug.Assert( i < (int)sizeof( yDbMask ) * 8 ); p.btreeMask |= ( (yDbMask)1 ) << i; if ( i != 1 && sqlite3BtreeSharable( p.db.aDb[i].pBt ) ) { p.lockMask |= ( (yDbMask)1 ) << i; } } #if !(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE//>0 /* ** If SQLite is compiled to support shared-cache mode and to be threadsafe, ** this routine obtains the mutex Debug.Associated with each BtShared structure ** that may be accessed by the VM pDebug.Assed as an argument. In doing so it also ** sets the BtShared.db member of each of the BtShared structures, ensuring ** that the correct busy-handler callback is invoked if required. ** ** If SQLite is not threadsafe but does support shared-cache mode, then ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables ** of all of BtShared structures accessible via the database handle ** Debug.Associated with the VM. ** ** If SQLite is not threadsafe and does not support shared-cache mode, this ** function is a no-op. ** ** The p.btreeMask field is a bitmask of all btrees that the prepared ** statement p will ever use. Let N be the number of bits in p.btreeMask ** corresponding to btrees that use shared cache. Then the runtime of ** this routine is N*N. But as N is rarely more than 1, this should not ** be a problem. */ void sqlite3VdbeEnter(Vdbe *p){ int i; yDbMask mask; sqlite3 db; Db *aDb; int nDb; if( p.lockMask==0 ) return; /* The common case */ db = p.db; aDb = db.aDb; nDb = db.nDb; for(i=0, mask=1; i0 /* ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). */ void sqlite3VdbeLeave(Vdbe *p){ int i; yDbMask mask; sqlite3 db; Db *aDb; int nDb; if( p.lockMask==0 ) return; /* The common case */ db = p.db; aDb = db.aDb; nDb = db.nDb; for(i=0, mask=1; i starting && p[starting] != null && N != 0 ) { Mem pEnd; //sqlite3 db = p[starting].db; //u8 malloc_failed = db.mallocFailed; //if ( db != null ) //&& db.pnBytesFreed != 0 ) //{ // for ( int i = starting; i < N; i++ )//pEnd = p[N] ; p < pEnd ; p++ ) // { // sqlite3DbFree( db, ref p[i].zMalloc ); // } // return; //} for ( int i = starting; i < N; i++ )//pEnd = p[N] ; p < pEnd ; p++ ) { pEnd = p[i]; Debug.Assert( //( p[1] ) == pEnd || N == 1 || i == p.Length - 1 || p[starting].db == p[starting + 1].db ); /* This block is really an inlined version of sqlite3VdbeMemRelease() ** that takes advantage of the fact that the memory cell value is ** being set to NULL after releasing any dynamic resources. ** ** The justification for duplicating code is that according to ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ if ( pEnd != null ) { if ( ( pEnd.flags & ( MEM_Agg | MEM_Dyn | MEM_Frame | MEM_RowSet ) ) != 0 ) { sqlite3VdbeMemRelease( pEnd ); } //else if ( pEnd.zMalloc != null ) //{ // sqlite3DbFree( db, ref pEnd.zMalloc ); // pEnd.zMalloc = 0; //} pEnd.z = null; pEnd.n = 0; pEnd.flags = MEM_Null; sqlite3_free( ref pEnd._Mem ); sqlite3_free( ref pEnd.zBLOB ); } } // db.mallocFailed = malloc_failed; } } /* ** Delete a VdbeFrame object and its contents. VdbeFrame objects are ** allocated by the OP_Program opcode in sqlite3VdbeExec(). */ static void sqlite3VdbeFrameDelete( VdbeFrame p ) { int i; //Mem[] aMem = VdbeFrameMem(p); VdbeCursor[] apCsr = p.aChildCsr;// (VdbeCursor)aMem[p.nChildMem]; for ( i = 0; i < p.nChildCsr; i++ ) { sqlite3VdbeFreeCursor( p.v, apCsr[i] ); } releaseMemArray( p.aChildMem, p.nChildMem ); p = null;// sqlite3DbFree( p.v.db, p ); } #if !SQLITE_OMIT_EXPLAIN /* ** Give a listing of the program in the virtual machine. ** ** The interface is the same as sqlite3VdbeExec(). But instead of ** running the code, it invokes the callback once for each instruction. ** This feature is used to implement "EXPLAIN". ** ** When p.explain==1, each instruction is listed. When ** p.explain==2, only OP_Explain instructions are listed and these ** are shown in a different format. p.explain==2 is used to implement ** EXPLAIN QUERY PLAN. ** ** When p->explain==1, first the main program is listed, then each of ** the trigger subprograms are listed one by one. */ static int sqlite3VdbeList( Vdbe p /* The VDBE */ ) { int nRow; /* Stop when row count reaches this */ int nSub = 0; /* Number of sub-vdbes seen so far */ SubProgram[] apSub = null; /* Array of sub-vdbes */ Mem pSub = null; /* Memory cell hold array of subprogs */ sqlite3 db = p.db; /* The database connection */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ if ( p.pResultSet == null ) p.pResultSet = new Mem[0];//Mem* pMem = p.pResultSet = p.aMem[1]; /* First Mem of result set */ Mem pMem; Debug.Assert( p.explain != 0 ); Debug.Assert( p.magic == VDBE_MAGIC_RUN ); Debug.Assert( p.rc == SQLITE_OK || p.rc == SQLITE_BUSY || p.rc == SQLITE_NOMEM ); /* Even though this opcode does not use dynamic strings for ** the result, result columns may become dynamic if the user calls ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. */ releaseMemArray( p.pResultSet, 8 ); //if ( p.rc == SQLITE_NOMEM ) //{ // /* This happens if a malloc() inside a call to sqlite3_column_text() or // ** sqlite3_column_text16() failed. */ // db.mallocFailed = 1; // return SQLITE_ERROR; //} /* When the number of output rows reaches nRow, that means the ** listing has finished and sqlite3_step() should return SQLITE_DONE. ** nRow is the sum of the number of rows in the main program, plus ** the sum of the number of rows in all trigger subprograms encountered ** so far. The nRow value will increase as new trigger subprograms are ** encountered, but p->pc will eventually catch up to nRow. */ nRow = p.nOp; int i_pMem; if ( p.explain == 1 ) { /* The first 8 memory cells are used for the result set. So we will ** commandeer the 9th cell to use as storage for an array of pointers ** to trigger subprograms. The VDBE is guaranteed to have at least 9 ** cells. */ Debug.Assert( p.nMem > 9 ); pSub = p.aMem[9]; if ( ( pSub.flags & MEM_Blob ) != 0 ) { /* On the first call to sqlite3_step(), pSub will hold a NULL. It is ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ apSub = p.aMem[9]._SubProgram; // apSub = (SubProgram*)pSub->z; nSub = apSub.Length;// pSub->n / sizeof( Vdbe* ); } for ( i = 0; i < nSub; i++ ) { nRow += apSub[i].nOp; } } i_pMem = 0; if ( i_pMem >= p.pResultSet.Length ) Array.Resize( ref p.pResultSet, 8 + p.pResultSet.Length ); { p.pResultSet[i_pMem] = sqlite3Malloc( p.pResultSet[i_pMem] ); } pMem = p.pResultSet[i_pMem++]; do { i = p.pc++; } while ( i < nRow && p.explain == 2 && p.aOp[i].opcode != OP_Explain ); if ( i >= nRow ) { p.rc = SQLITE_OK; rc = SQLITE_DONE; } else if ( db.u1.isInterrupted ) { p.rc = SQLITE_INTERRUPT; rc = SQLITE_ERROR; sqlite3SetString( ref p.zErrMsg, db, sqlite3ErrStr( p.rc ) ); } else { string z; Op pOp; if ( i < p.nOp ) { /* The output line number is small enough that we are still in the ** main program. */ pOp = p.aOp[i]; } else { /* We are currently listing subprograms. Figure out which one and ** pick up the appropriate opcode. */ int j; i -= p.nOp; for ( j = 0; i >= apSub[j].nOp; j++ ) { i -= apSub[j].nOp; } pOp = apSub[j].aOp[i]; } if ( p.explain == 1 ) { pMem.flags = MEM_Int; pMem.type = SQLITE_INTEGER; pMem.u.i = i; /* Program counter */ if ( p.pResultSet[i_pMem] == null ) { p.pResultSet[i_pMem] = sqlite3Malloc( p.pResultSet[i_pMem] ); } pMem = p.pResultSet[i_pMem++]; //pMem++; /* When an OP_Program opcode is encounter (the only opcode that has ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms ** kept in p->aMem[9].z to hold the new program - assuming this subprogram ** has not already been seen. */ pMem.flags = MEM_Static | MEM_Str | MEM_Term; pMem.z = sqlite3OpcodeName( pOp.opcode ); /* Opcode */ Debug.Assert( pMem.z != null ); pMem.n = sqlite3Strlen30( pMem.z ); pMem.type = SQLITE_TEXT; pMem.enc = SQLITE_UTF8; if ( p.pResultSet[i_pMem] == null ) { p.pResultSet[i_pMem] = sqlite3Malloc( p.pResultSet[i_pMem] ); } pMem = p.pResultSet[i_pMem++]; //pMem++; if ( pOp.p4type == P4_SUBPROGRAM ) { //Debugger.Break(); // TODO //int nByte = 0;//(nSub+1)*sizeof(SubProgram); int j; for ( j = 0; j < nSub; j++ ) { if ( apSub[j] == pOp.p4.pProgram ) break; } if ( j == nSub ) {// && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ Array.Resize( ref apSub, nSub + 1 ); pSub._SubProgram = apSub;// (SubProgram)pSub.z; apSub[nSub++] = pOp.p4.pProgram; pSub.flags |= MEM_Blob; pSub.n = 0;//nSub*sizeof(SubProgram); } } } pMem.flags = MEM_Int; pMem.u.i = pOp.p1; /* P1 */ pMem.type = SQLITE_INTEGER; if ( p.pResultSet[i_pMem] == null ) { p.pResultSet[i_pMem] = sqlite3Malloc( p.pResultSet[i_pMem] ); } pMem = p.pResultSet[i_pMem++]; //pMem++; pMem.flags = MEM_Int; pMem.u.i = pOp.p2; /* P2 */ pMem.type = SQLITE_INTEGER; if ( p.pResultSet[i_pMem] == null ) { p.pResultSet[i_pMem] = sqlite3Malloc( p.pResultSet[i_pMem] ); } pMem = p.pResultSet[i_pMem++]; //pMem++; pMem.flags = MEM_Int; pMem.u.i = pOp.p3; /* P3 */ pMem.type = SQLITE_INTEGER; if ( p.pResultSet[i_pMem] == null ) { p.pResultSet[i_pMem] = sqlite3Malloc( p.pResultSet[i_pMem] ); } pMem = p.pResultSet[i_pMem++]; //pMem++; //if ( sqlite3VdbeMemGrow( pMem, 32, 0 ) != 0 ) //{ /* P4 */ // Debug.Assert( p.db.mallocFailed != 0 ); // return SQLITE_ERROR; //} pMem.flags = MEM_Dyn | MEM_Str | MEM_Term; z = displayP4( pOp, pMem.z, 32 ); if ( z != pMem.z ) { sqlite3VdbeMemSetStr( pMem, z, -1, SQLITE_UTF8, null ); } else { Debug.Assert( pMem.z != null ); pMem.n = sqlite3Strlen30( pMem.z ); pMem.enc = SQLITE_UTF8; } pMem.type = SQLITE_TEXT; if ( p.pResultSet[i_pMem] == null ) { p.pResultSet[i_pMem] = sqlite3Malloc( p.pResultSet[i_pMem] ); } pMem = p.pResultSet[i_pMem++]; //pMem++; if ( p.explain == 1 ) { //if ( sqlite3VdbeMemGrow( pMem, 4, 0 ) != 0 ) //{ // Debug.Assert( p.db.mallocFailed != 0 ); // return SQLITE_ERROR; //} pMem.flags = MEM_Dyn | MEM_Str | MEM_Term; pMem.n = 2; pMem.z = pOp.p5.ToString( "x2" ); //sqlite3_snprintf( 3, pMem.z, "%.2x", pOp.p5 ); /* P5 */ pMem.type = SQLITE_TEXT; pMem.enc = SQLITE_UTF8; if ( p.pResultSet[i_pMem] == null ) { p.pResultSet[i_pMem] = sqlite3Malloc( p.pResultSet[i_pMem] ); } pMem = p.pResultSet[i_pMem++]; // pMem++; #if SQLITE_DEBUG if ( pOp.zComment != null ) { pMem.flags = MEM_Str | MEM_Term; pMem.z = pOp.zComment; pMem.n = pMem.z == null ? 0 : sqlite3Strlen30( pMem.z ); pMem.enc = SQLITE_UTF8; pMem.type = SQLITE_TEXT; } else #endif { pMem.flags = MEM_Null; /* Comment */ pMem.type = SQLITE_NULL; } } p.nResColumn = (u16)( 8 - 4 * ( p.explain - 1 ) ); p.rc = SQLITE_OK; rc = SQLITE_ROW; } return rc; } #endif // * SQLITE_OMIT_EXPLAIN */ #if SQLITE_DEBUG /* ** Print the SQL that was used to generate a VDBE program. */ static void sqlite3VdbePrintSql( Vdbe p ) { int nOp = p.nOp; VdbeOp pOp; if ( nOp < 1 ) return; pOp = p.aOp[0]; if ( pOp.opcode == OP_Trace && pOp.p4.z != null ) { string z = pOp.p4.z; z = z.Trim();// while ( sqlite3Isspace( *(u8)z ) ) z++; Console.Write( "SQL: [%s]\n", z ); } } #endif #if !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE /* ** Print an IOTRACE message showing SQL content. */ static void sqlite3VdbeIOTraceSql( Vdbe p ) { int nOp = p.nOp; VdbeOp pOp; if ( SQLite3IoTrace == false ) return; if ( nOp < 1 ) return; pOp = p.aOp[0]; if ( pOp.opcode == OP_Trace && pOp.p4.z != null ) { int i, j; string z = string.Empty;//char z[1000]; sqlite3_snprintf( 1000, z, "%s", pOp.p4.z ); //for(i=0; sqlite3Isspace(z[i]); i++){} //for(j=0; z[i]; i++){ //if( sqlite3Isspace(z[i]) ){ //if( z[i-1]!=' ' ){ //z[j++] = ' '; //} //}else{ //z[j++] = z[i]; //} //} //z[j] = 0; //z = z.Trim( z ); sqlite3IoTrace( "SQL %s\n", z.Trim() ); } } #endif // * !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ /* ** Allocate space from a fixed size buffer and return a pointer to ** that space. If insufficient space is available, return NULL. ** ** The pBuf parameter is the initial value of a pointer which will ** receive the new memory. pBuf is normally NULL. If pBuf is not ** NULL, it means that memory space has already been allocated and that ** this routine should not allocate any new memory. When pBuf is not ** NULL simply return pBuf. Only allocate new memory space when pBuf ** is NULL. ** ** nByte is the number of bytes of space needed. ** ** *ppFrom points to available space and pEnd points to the end of the ** available space. When space is allocated, *ppFrom is advanced past ** the end of the allocated space. ** ** *pnByte is a counter of the number of bytes of space that have failed ** to allocate. If there is insufficient space in *ppFrom to satisfy the ** request, then increment *pnByte by the amount of the request. */ //static void* allocSpace( // void* pBuf, /* Where return pointer will be stored */ // int nByte, /* Number of bytes to allocate */ // u8** ppFrom, /* IN/OUT: Allocate from *ppFrom */ // u8* pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ // int* pnByte /* If allocation cannot be made, increment *pnByte */ //) //{ // Debug.Assert(EIGHT_BYTE_ALIGNMENT(*ppFrom)); // if (pBuf) return pBuf; // nByte = ROUND8(nByte); // if (&(*ppFrom)[nByte] <= pEnd) // { // pBuf = (void)*ppFrom; // *ppFrom += nByte; // } // else // { // *pnByte += nByte; // } // return pBuf; //} /* ** Rewind the VDBE back to the beginning in preparation for ** running it. */ static void sqlite3VdbeRewind(Vdbe p){ #if (SQLITE_DEBUG) || (VDBE_PROFILE) int i; #endif Debug.Assert( p!=null ); Debug.Assert( p.magic==VDBE_MAGIC_INIT ); /* There should be at least one opcode. */ Debug.Assert( p.nOp>0 ); /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ p.magic = VDBE_MAGIC_RUN; #if SQLITE_DEBUG for(i=1; iaOp[p->nOp]; /* Memory avaliable for allocation */ //zEnd = (u8)&p->aOp[p->nOpAlloc]; /* First byte past end of zCsr[] */ resolveP2Values( p, ref nArg ); p.usesStmtJournal = (pParse.isMultiWrite !=0 && pParse.mayAbort !=0 ); if( pParse.explain !=0 && nMem<10 ){ nMem = 10; } //memset(zCsr, 0, zEnd-zCsr); //zCsr += ( zCsr - (u8)0 ) & 7; //Debug.Assert( EIGHT_BYTE_ALIGNMENT( zCsr ) ); p.expired = false; // // C# -- Replace allocation with individual Dims // /* Memory for registers, parameters, cursor, etc, is allocated in two ** passes. On the first pass, we try to reuse unused space at the ** end of the opcode array. If we are unable to satisfy all memory ** requirements by reusing the opcode array tail, then the second ** pass will fill in the rest using a fresh allocation. ** ** This two-pass approach that reuses as much memory as possible from ** the leftover space at the end of the opcode array can significantly ** reduce the amount of memory held by a prepared statement. */ //do //{ // nByte = 0; // p->aMem = allocSpace( p->aMem, nMem * sizeof( Mem ), &zCsr, zEnd, &nByte ); // p->aVar = allocSpace( p->aVar, nVar * sizeof( Mem ), &zCsr, zEnd, &nByte ); // p->apArg = allocSpace( p->apArg, nArg * sizeof( Mem* ), &zCsr, zEnd, &nByte ); // p->azVar = allocSpace( p->azVar, nVar * sizeof( char* ), &zCsr, zEnd, &nByte ); // p->apCsr = allocSpace( p->apCsr, nCursor * sizeof( VdbeCursor* ), // &zCsr, zEnd, &nByte ); // if ( nByte ) // { // p->pFree = sqlite3DbMallocZero( db, nByte ); // } // zCsr = p->pFree; // zEnd = zCsr[nByte]; //} while ( nByte && !db->mallocFailed ); //p->nCursor = (u16)nCursor; //if( p->aVar ){ // p->nVar = (ynVar)nVar; // for(n=0; naVar[n].flags = MEM_Null; // p->aVar[n].db = db; // } //} //if( p->azVar ){ // p->nzVar = pParse->nzVar; // memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0])); // memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0])); //} p.nzVar = (i16)pParse.nzVar; p.azVar = new string[p.nzVar == 0 ? 1 : (int)p.nzVar]; //p.azVar = (char*)p.apArg[nArg]; for ( n = 0; n < p.nzVar; n++ ) { p.azVar[n] = pParse.azVar[n]; } // // C# -- Replace allocation with individual Dims // aMem is 1 based, so allocate 1 extra cell under C# p.aMem = new Mem[nMem + 1]; for ( n = 0; n <= nMem; n++ ) { p.aMem[n] = sqlite3Malloc( p.aMem[n] ); p.aMem[n].db = db; } //p.aMem--; /* aMem[] goes from 1..nMem */ p.nMem = nMem; /* not from 0..nMem-1 */ // p.aVar = new Mem[nVar == 0 ? 1 : nVar]; for ( n = 0; n < nVar; n++ ) { p.aVar[n] = sqlite3Malloc( p.aVar[n] ); } p.nVar = (ynVar)nVar; // p.apArg = new Mem[nArg == 0 ? 1 : nArg];//p.apArg = (Mem*)p.aVar[nVar]; // p.apCsr = new VdbeCursor[nCursor == 0 ? 1 : nCursor];//p.apCsr = (VdbeCursor*)p.azVar[nVar]; p.apCsr[0] = new VdbeCursor(); p.nCursor = (u16)nCursor; if ( p.aVar != null ) { p.nVar = (ynVar)nVar; // for ( n = 0; n < nVar; n++ ) { p.aVar[n].flags = MEM_Null; p.aVar[n].db = db; } } if ( p.aMem != null ) { //p.aMem--; /* aMem[] goes from 1..nMem */ p.nMem = nMem; /* not from 0..nMem-1 */ for ( n = 0; n <= nMem; n++ ) { p.aMem[n].flags = MEM_Null; p.aMem[n].n = 0; p.aMem[n].z = null; p.aMem[n].zBLOB = null; p.aMem[n].db = db; } } p.explain = pParse.explain; sqlite3VdbeRewind( p ); } /* ** Close a VDBE cursor and release all the resources that cursor ** happens to hold. */ static void sqlite3VdbeFreeCursor( Vdbe p, VdbeCursor pCx ) { if ( pCx == null ) { return; } if ( pCx.pBt != null ) { sqlite3BtreeClose( ref pCx.pBt ); /* The pCx.pCursor will be close automatically, if it exists, by ** the call above. */ } else if ( pCx.pCursor != null ) { sqlite3BtreeCloseCursor( pCx.pCursor ); } #if !SQLITE_OMIT_VIRTUALTABLE if ( pCx.pVtabCursor != null ) { sqlite3_vtab_cursor pVtabCursor = pCx.pVtabCursor; sqlite3_module pModule = pCx.pModule; p.inVtabMethod = 1; pModule.xClose( ref pVtabCursor ); p.inVtabMethod = 0; } #endif } /* ** Copy the values stored in the VdbeFrame structure to its Vdbe. This ** is used, for example, when a trigger sub-program is halted to restore ** control to the main program. */ static int sqlite3VdbeFrameRestore( VdbeFrame pFrame ) { Vdbe v = pFrame.v; v.aOp = pFrame.aOp; v.nOp = pFrame.nOp; v.aMem = pFrame.aMem; v.nMem = pFrame.nMem; v.apCsr = pFrame.apCsr; v.nCursor = pFrame.nCursor; v.db.lastRowid = pFrame.lastRowid; v.nChange = pFrame.nChange; return pFrame.pc; } /* ** Close all cursors. ** ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory ** cell array. This is necessary as the memory cell array may contain ** pointers to VdbeFrame objects, which may in turn contain pointers to ** open cursors. */ static void closeAllCursors( Vdbe p ) { if ( p.pFrame != null ) { VdbeFrame pFrame; for ( pFrame = p.pFrame; pFrame.pParent != null; pFrame = pFrame.pParent ) ; sqlite3VdbeFrameRestore( pFrame ); } p.pFrame = null; p.nFrame = 0; if ( p.apCsr != null ) { int i; for ( i = 0; i < p.nCursor; i++ ) { VdbeCursor pC = p.apCsr[i]; if ( pC != null ) { sqlite3VdbeFreeCursor( p, pC ); p.apCsr[i] = null; } } } if ( p.aMem != null ) { releaseMemArray( p.aMem, 1, p.nMem ); } while ( p.pDelFrame != null ) { VdbeFrame pDel = p.pDelFrame; p.pDelFrame = pDel.pParent; sqlite3VdbeFrameDelete( pDel ); } } /* ** Clean up the VM after execution. ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. It also deletes the values of ** variables in the aVar[] array. */ static void Cleanup( Vdbe p ) { sqlite3 db = p.db; #if SQLITE_DEBUG /* Execute Debug.Assert() statements to ensure that the Vdbe.apCsr[] and ** Vdbe.aMem[] arrays have already been cleaned up. */ int i; //TODO for(i=0; i 0 ) { p.aColName[n] = sqlite3Malloc( p.aColName[n] ); pColName = p.aColName[n]; pColName.flags = MEM_Null; pColName.db = p.db; } } /* ** Set the name of the idx'th column to be returned by the SQL statement. ** zName must be a pointer to a nul terminated string. ** ** This call must be made after a call to sqlite3VdbeSetNumCols(). ** ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. */ static int sqlite3VdbeSetColName( Vdbe p, /* Vdbe being configured */ int idx, /* Index of column zName applies to */ int var, /* One of the COLNAME_* constants */ string zName, /* Pointer to buffer containing name */ dxDel xDel /* Memory management strategy for zName */ ) { int rc; Mem pColName; Debug.Assert( idx < p.nResColumn ); Debug.Assert( var < COLNAME_N ); //if ( p.db.mallocFailed != 0 ) //{ // Debug.Assert( null == zName || xDel != SQLITE_DYNAMIC ); // return SQLITE_NOMEM; //} Debug.Assert( p.aColName != null ); pColName = p.aColName[idx + var * p.nResColumn]; rc = sqlite3VdbeMemSetStr( pColName, zName, -1, SQLITE_UTF8, xDel ); Debug.Assert( rc != 0 || null == zName || ( pColName.flags & MEM_Term ) != 0 ); return rc; } /* ** A read or write transaction may or may not be active on database handle ** db. If a transaction is active, commit it. If there is a ** write-transaction spanning more than one database file, this routine ** takes care of the master journal trickery. */ static int vdbeCommit( sqlite3 db, Vdbe p ) { int i; int nTrans = 0; /* Number of databases with an active write-transaction */ int rc = SQLITE_OK; bool needXcommit = false; #if SQLITE_OMIT_VIRTUALTABLE /* With this option, sqlite3VtabSync() is defined to be simply ** SQLITE_OK so p is not used. */ UNUSED_PARAMETER( p ); #endif /* Before doing anything else, call the xSync() callback for any ** virtual module tables written in this transaction. This has to ** be done before determining whether a master journal file is ** required, as an xSync() callback may add an attached database ** to the transaction. */ rc = sqlite3VtabSync( db, ref p.zErrMsg ); /* This loop determines (a) if the commit hook should be invoked and ** (b) how many database files have open write transactions, not ** including the temp database. (b) is important because if more than ** one database file has an open write transaction, a master journal ** file is required for an atomic commit. */ for ( i = 0; rc == SQLITE_OK && i < db.nDb; i++ ) { Btree pBt = db.aDb[i].pBt; if ( sqlite3BtreeIsInTrans( pBt ) ) { needXcommit = true; if ( i != 1 ) nTrans++; rc = sqlite3PagerExclusiveLock( sqlite3BtreePager( pBt ) ); } } if ( rc != SQLITE_OK ) { return rc; } /* If there are any write-transactions at all, invoke the commit hook */ if ( needXcommit && db.xCommitCallback != null ) { rc = db.xCommitCallback( db.pCommitArg ); if ( rc != 0 ) { return SQLITE_CONSTRAINT; } } /* The simple case - no more than one database file (not counting the ** TEMP database) has a transaction active. There is no need for the ** master-journal. ** ** If the return value of sqlite3BtreeGetFilename() is a zero length ** string, it means the main database is :memory: or a temp file. In ** that case we do not support atomic multi-file commits, so use the ** simple case then too. */ if ( 0 == sqlite3Strlen30( sqlite3BtreeGetFilename( db.aDb[0].pBt ) ) || nTrans <= 1 ) { for ( i = 0; rc == SQLITE_OK && i < db.nDb; i++ ) { Btree pBt = db.aDb[i].pBt; if ( pBt != null ) { rc = sqlite3BtreeCommitPhaseOne( pBt, null ); } } /* Do the commit only if all databases successfully complete phase 1. ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an ** IO error while deleting or truncating a journal file. It is unlikely, ** but could happen. In this case abandon processing and return the error. */ for ( i = 0; rc == SQLITE_OK && i < db.nDb; i++ ) { Btree pBt = db.aDb[i].pBt; if ( pBt != null ) { rc = sqlite3BtreeCommitPhaseTwo( pBt, 0 ); } } if ( rc == SQLITE_OK ) { sqlite3VtabCommit( db ); } } /* The complex case - There is a multi-file write-transaction active. ** This requires a master journal file to ensure the transaction is ** committed atomicly. */ #if !SQLITE_OMIT_DISKIO else { sqlite3_vfs pVfs = db.pVfs; bool needSync = false; string zMaster = string.Empty; /* File-name for the master journal */ string zMainFile = sqlite3BtreeGetFilename( db.aDb[0].pBt ); sqlite3_file pMaster = null; i64 offset = 0; int res = 0; /* Select a master journal file name */ do { i64 iRandom = 0; sqlite3DbFree( db, ref zMaster ); sqlite3_randomness( sizeof( u32 ), ref iRandom );//random.Length zMaster = sqlite3MPrintf( db, "%s-mj%08X", zMainFile, iRandom & 0x7fffffff ); //if (!zMaster) //{ // return SQLITE_NOMEM; //} sqlite3FileSuffix3( zMainFile, zMaster ); rc = sqlite3OsAccess( pVfs, zMaster, SQLITE_ACCESS_EXISTS, ref res ); } while ( rc == SQLITE_OK && res == 1 ); if ( rc == SQLITE_OK ) { /* Open the master journal. */ rc = sqlite3OsOpenMalloc( ref pVfs, zMaster, ref pMaster, SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_MASTER_JOURNAL, ref rc ); } if ( rc != SQLITE_OK ) { sqlite3DbFree( db, ref zMaster ); return rc; } /* Write the name of each database file in the transaction into the new ** master journal file. If an error occurs at this point close ** and delete the master journal file. All the individual journal files ** still have 'null' as the master journal pointer, so they will roll ** back independently if a failure occurs. */ for ( i = 0; i < db.nDb; i++ ) { Btree pBt = db.aDb[i].pBt; if ( sqlite3BtreeIsInTrans( pBt ) ) { string zFile = sqlite3BtreeGetJournalname( pBt ); if ( zFile == null ) { continue; /* Ignore TEMP and :memory: databases */ } Debug.Assert( zFile.Length > 0 ); if ( !needSync && 0 == sqlite3BtreeSyncDisabled( pBt ) ) { needSync = true; } rc = sqlite3OsWrite( pMaster, Encoding.UTF8.GetBytes( zFile ), sqlite3Strlen30( zFile ), offset ); offset += sqlite3Strlen30( zFile ); if ( rc != SQLITE_OK ) { sqlite3OsCloseFree( pMaster ); sqlite3OsDelete( pVfs, zMaster, 0 ); sqlite3DbFree( db, ref zMaster ); return rc; } } } /* Sync the master journal file. If the IOCAP_SEQUENTIAL device ** flag is set this is not required. */ if ( needSync && 0 == ( sqlite3OsDeviceCharacteristics( pMaster ) & SQLITE_IOCAP_SEQUENTIAL ) && SQLITE_OK != ( rc = sqlite3OsSync( pMaster, SQLITE_SYNC_NORMAL ) ) ) { sqlite3OsCloseFree( pMaster ); sqlite3OsDelete( pVfs, zMaster, 0 ); sqlite3DbFree( db, ref zMaster ); return rc; } /* Sync all the db files involved in the transaction. The same call ** sets the master journal pointer in each individual journal. If ** an error occurs here, do not delete the master journal file. ** ** If the error occurs during the first call to ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the ** master journal file will be orphaned. But we cannot delete it, ** in case the master journal file name was written into the journal ** file before the failure occurred. */ for ( i = 0; rc == SQLITE_OK && i < db.nDb; i++ ) { Btree pBt = db.aDb[i].pBt; if ( pBt != null ) { rc = sqlite3BtreeCommitPhaseOne( pBt, zMaster ); } } sqlite3OsCloseFree( pMaster ); Debug.Assert( rc != SQLITE_BUSY ); if ( rc != SQLITE_OK ) { sqlite3DbFree( db, ref zMaster ); return rc; } /* Delete the master journal file. This commits the transaction. After ** doing this the directory is synced again before any individual ** transaction files are deleted. */ rc = sqlite3OsDelete( pVfs, zMaster, 1 ); sqlite3DbFree( db, ref zMaster ); if ( rc != 0 ) { return rc; } /* All files and directories have already been synced, so the following ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and ** deleting or truncating journals. If something goes wrong while ** this is happening we don't really care. The integrity of the ** transaction is already guaranteed, but some stray 'cold' journals ** may be lying around. Returning an error code won't help matters. */ #if SQLITE_TEST disable_simulated_io_errors(); #endif sqlite3BeginBenignMalloc(); for ( i = 0; i < db.nDb; i++ ) { Btree pBt = db.aDb[i].pBt; if ( pBt != null ) { sqlite3BtreeCommitPhaseTwo( pBt, 0 ); } } sqlite3EndBenignMalloc(); #if SQLITE_TEST enable_simulated_io_errors(); #endif sqlite3VtabCommit( db ); } #endif return rc; } /* ** This routine checks that the sqlite3.activeVdbeCnt count variable ** matches the number of vdbe's in the list sqlite3.pVdbe that are ** currently active. An Debug.Assertion fails if the two counts do not match. ** This is an internal self-check only - it is not an essential processing ** step. ** ** This is a no-op if NDEBUG is defined. */ #if !NDEBUG static void checkActiveVdbeCnt( sqlite3 db ) { Vdbe p; int cnt = 0; int nWrite = 0; p = db.pVdbe; while ( p != null ) { if ( p.magic == VDBE_MAGIC_RUN && p.pc >= 0 ) { cnt++; if ( p.readOnly == false ) nWrite++; } p = p.pNext; } Debug.Assert( cnt == db.activeVdbeCnt ); Debug.Assert( nWrite == db.writeVdbeCnt ); } #else //#define checkActiveVdbeCnt(x) static void checkActiveVdbeCnt( sqlite3 db ){} #endif /* ** For every Btree that in database connection db which ** has been modified, "trip" or invalidate each cursor in ** that Btree might have been modified so that the cursor ** can never be used again. This happens when a rollback *** occurs. We have to trip all the other cursors, even ** cursor from other VMs in different database connections, ** so that none of them try to use the data at which they ** were pointing and which now may have been changed due ** to the rollback. ** ** Remember that a rollback can delete tables complete and ** reorder rootpages. So it is not sufficient just to save ** the state of the cursor. We have to invalidate the cursor ** so that it is never used again. */ static void invalidateCursorsOnModifiedBtrees( sqlite3 db ) { int i; for ( i = 0; i < db.nDb; i++ ) { Btree p = db.aDb[i].pBt; if ( p != null && sqlite3BtreeIsInTrans( p ) ) { sqlite3BtreeTripAllCursors( p, SQLITE_ABORT ); } } } /* ** If the Vdbe passed as the first argument opened a statement-transaction, ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the ** statement transaction is commtted. ** ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. ** Otherwise SQLITE_OK. */ static int sqlite3VdbeCloseStatement( Vdbe p, int eOp ) { sqlite3 db = p.db; int rc = SQLITE_OK; /* If p->iStatement is greater than zero, then this Vdbe opened a ** statement transaction that should be closed here. The only exception ** is that an IO error may have occured, causing an emergency rollback. ** In this case (db->nStatement==0), and there is nothing to do. */ if ( db.nStatement != 0 && p.iStatement != 0 ) { int i; int iSavepoint = p.iStatement - 1; Debug.Assert( eOp == SAVEPOINT_ROLLBACK || eOp == SAVEPOINT_RELEASE ); Debug.Assert( db.nStatement > 0 ); Debug.Assert( p.iStatement == ( db.nStatement + db.nSavepoint ) ); for ( i = 0; i < db.nDb; i++ ) { int rc2 = SQLITE_OK; Btree pBt = db.aDb[i].pBt; if ( pBt != null ) { if ( eOp == SAVEPOINT_ROLLBACK ) { rc2 = sqlite3BtreeSavepoint( pBt, SAVEPOINT_ROLLBACK, iSavepoint ); } if ( rc2 == SQLITE_OK ) { rc2 = sqlite3BtreeSavepoint( pBt, SAVEPOINT_RELEASE, iSavepoint ); } if ( rc == SQLITE_OK ) { rc = rc2; } } } db.nStatement--; p.iStatement = 0; if ( rc == SQLITE_OK ) { if ( eOp == SAVEPOINT_ROLLBACK ) { rc = sqlite3VtabSavepoint( db, SAVEPOINT_ROLLBACK, iSavepoint ); } if ( rc == SQLITE_OK ) { rc = sqlite3VtabSavepoint( db, SAVEPOINT_RELEASE, iSavepoint ); } } /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if ( eOp == SAVEPOINT_ROLLBACK ) { db.nDeferredCons = p.nStmtDefCons; } } return rc; } /* ** This function is called when a transaction opened by the database ** handle associated with the VM passed as an argument is about to be ** committed. If there are outstanding deferred foreign key constraint ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. ** ** If there are outstanding FK violations and this function returns ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write ** an error message to it. Then return SQLITE_ERROR. */ #if !SQLITE_OMIT_FOREIGN_KEY static int sqlite3VdbeCheckFk( Vdbe p, int deferred ) { sqlite3 db = p.db; if ( ( deferred != 0 && db.nDeferredCons > 0 ) || ( 0 == deferred && p.nFkConstraint > 0 ) ) { p.rc = SQLITE_CONSTRAINT; p.errorAction = OE_Abort; sqlite3SetString( ref p.zErrMsg, db, "foreign key constraint failed" ); return SQLITE_ERROR; } return SQLITE_OK; } #endif /* ** This routine is called the when a VDBE tries to halt. If the VDBE ** has made changes and is in autocommit mode, then commit those ** changes. If a rollback is needed, then do the rollback. ** ** This routine is the only way to move the state of a VM from ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to ** call this on a VM that is in the SQLITE_MAGIC_HALT state. ** ** Return an error code. If the commit could not complete because of ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it ** means the close did not happen and needs to be repeated. */ static int sqlite3VdbeHalt( Vdbe p ) { int rc; /* Used to store transient return codes */ sqlite3 db = p.db; /* This function contains the logic that determines if a statement or ** transaction will be committed or rolled back as a result of the ** execution of this virtual machine. ** ** If any of the following errors occur: ** ** SQLITE_NOMEM ** SQLITE_IOERR ** SQLITE_FULL ** SQLITE_INTERRUPT ** ** Then the internal cache might have been left in an inconsistent ** state. We need to rollback the statement transaction, if there is ** one, or the complete transaction if there is no statement transaction. */ //if ( p.db.mallocFailed != 0 ) //{ // p.rc = SQLITE_NOMEM; //} closeAllCursors( p ); if ( p.magic != VDBE_MAGIC_RUN ) { return SQLITE_OK; } checkActiveVdbeCnt( db ); /* No commit or rollback needed if the program never started */ if ( p.pc >= 0 ) { int mrc; /* Primary error code from p.rc */ int eStatementOp = 0; bool isSpecialError = false; /* Set to true if a 'special' error */ /* Lock all btrees used by the statement */ sqlite3VdbeEnter( p ); /* Check for one of the special errors */ mrc = p.rc & 0xff; Debug.Assert( p.rc != SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ isSpecialError = mrc == SQLITE_NOMEM || mrc == SQLITE_IOERR || mrc == SQLITE_INTERRUPT || mrc == SQLITE_FULL; if ( isSpecialError ) { /* If the query was read-only and the error code is SQLITE_INTERRUPT, ** no rollback is necessary. Otherwise, at least a savepoint ** transaction must be rolled back to restore the database to a ** consistent state. ** ** Even if the statement is read-only, it is important to perform ** a statement or transaction rollback operation. If the error ** occured while writing to the journal, sub-journal or database ** file as part of an effort to free up cache space (see function ** pagerStress() in pager.c), the rollback is required to restore ** the pager to a consistent state. */ if ( !p.readOnly || mrc != SQLITE_INTERRUPT ) { if ( ( mrc == SQLITE_NOMEM || mrc == SQLITE_FULL ) && p.usesStmtJournal ) { eStatementOp = SAVEPOINT_ROLLBACK; } else { /* We are forced to roll back the active transaction. Before doing ** so, abort any other statements this handle currently has active. */ invalidateCursorsOnModifiedBtrees( db ); sqlite3RollbackAll( db ); sqlite3CloseSavepoints( db ); db.autoCommit = 1; } } } /* Check for immediate foreign key violations. */ if ( p.rc == SQLITE_OK ) { sqlite3VdbeCheckFk( p, 0 ); } /* If the auto-commit flag is set and this is the only active writer ** VM, then we do either a commit or rollback of the current transaction. ** ** Note: This block also runs if one of the special errors handled ** above has occurred. */ if ( !sqlite3VtabInSync( db ) && db.autoCommit != 0 && db.writeVdbeCnt == ( ( p.readOnly == false ) ? 1 : 0 ) ) { if ( p.rc == SQLITE_OK || ( p.errorAction == OE_Fail && !isSpecialError ) ) { rc = sqlite3VdbeCheckFk( p, 1 ); if ( rc != SQLITE_OK ) { if ( NEVER( p.readOnly ) ) { sqlite3VdbeLeave( p ); return SQLITE_ERROR; } rc = SQLITE_CONSTRAINT; } else { /* The auto-commit flag is true, the vdbe program was successful ** or hit an 'OR FAIL' constraint and there are no deferred foreign ** key constraints to hold up the transaction. This means a commit ** is required. */ rc = vdbeCommit( db, p ); } if ( rc == SQLITE_BUSY && p.readOnly ) { sqlite3VdbeLeave( p ); return SQLITE_BUSY; } else if ( rc != SQLITE_OK ) { p.rc = rc; sqlite3RollbackAll( db ); } else { db.nDeferredCons = 0; sqlite3CommitInternalChanges( db ); } } else { sqlite3RollbackAll( db ); } db.nStatement = 0; } else if ( eStatementOp == 0 ) { if ( p.rc == SQLITE_OK || p.errorAction == OE_Fail ) { eStatementOp = SAVEPOINT_RELEASE; } else if ( p.errorAction == OE_Abort ) { eStatementOp = SAVEPOINT_ROLLBACK; } else { invalidateCursorsOnModifiedBtrees( db ); sqlite3RollbackAll( db ); sqlite3CloseSavepoints( db ); db.autoCommit = 1; } } /* If eStatementOp is non-zero, then a statement transaction needs to ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to ** do so. If this operation returns an error, and the current statement ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the ** current statement error code. */ if ( eStatementOp != 0 ) { rc = sqlite3VdbeCloseStatement( p, eStatementOp ); if ( rc != 0 ) { if ( p.rc == SQLITE_OK || p.rc == SQLITE_CONSTRAINT ) { p.rc = rc; sqlite3DbFree( db, ref p.zErrMsg ); p.zErrMsg = null; } invalidateCursorsOnModifiedBtrees( db ); sqlite3RollbackAll( db ); sqlite3CloseSavepoints( db ); db.autoCommit = 1; } } /* If this was an INSERT, UPDATE or DELETE and no statement transaction ** has been rolled back, update the database connection change-counter. */ if ( p.changeCntOn ) { if ( eStatementOp != SAVEPOINT_ROLLBACK ) { sqlite3VdbeSetChanges( db, p.nChange ); } else { sqlite3VdbeSetChanges( db, 0 ); } p.nChange = 0; } /* Rollback or commit any schema changes that occurred. */ if ( p.rc != SQLITE_OK && ( db.flags & SQLITE_InternChanges ) != 0 ) { sqlite3ResetInternalSchema( db, -1 ); db.flags = ( db.flags | SQLITE_InternChanges ); } /* Release the locks */ sqlite3VdbeLeave( p ); } /* We have successfully halted and closed the VM. Record this fact. */ if ( p.pc >= 0 ) { db.activeVdbeCnt--; if ( !p.readOnly ) { db.writeVdbeCnt--; } Debug.Assert( db.activeVdbeCnt >= db.writeVdbeCnt ); } p.magic = VDBE_MAGIC_HALT; checkActiveVdbeCnt( db ); //if ( p.db.mallocFailed != 0 ) //{ // p.rc = SQLITE_NOMEM; //} /* If the auto-commit flag is set to true, then any locks that were held ** by connection db have now been released. Call sqlite3ConnectionUnlocked() ** to invoke any required unlock-notify callbacks. */ if ( db.autoCommit != 0 ) { sqlite3ConnectionUnlocked( db ); } Debug.Assert( db.activeVdbeCnt > 0 || db.autoCommit == 0 || db.nStatement == 0 ); return ( p.rc == SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK ); } /* ** Each VDBE holds the result of the most recent sqlite3_step() call ** in p.rc. This routine sets that result back to SQLITE_OK. */ static void sqlite3VdbeResetStepResult( Vdbe p ) { p.rc = SQLITE_OK; } /* ** Clean up a VDBE after execution but do not delete the VDBE just yet. ** Write any error messages into pzErrMsg. Return the result code. ** ** After this routine is run, the VDBE should be ready to be executed ** again. ** ** To look at it another way, this routine resets the state of the ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to ** VDBE_MAGIC_INIT. */ static int sqlite3VdbeReset( Vdbe p ) { sqlite3 db; db = p.db; /* If the VM did not run to completion or if it encountered an ** error, then it might not have been halted properly. So halt ** it now. */ sqlite3VdbeHalt( p ); /* If the VDBE has be run even partially, then transfer the error code ** and error message from the VDBE into the main database structure. But ** if the VDBE has just been set to run but has not actually executed any ** instructions yet, leave the main database error information unchanged. */ if ( p.pc >= 0 ) { //if ( p.zErrMsg != 0 ) // Always exists under C# { sqlite3BeginBenignMalloc(); sqlite3ValueSetStr( db.pErr, -1, p.zErrMsg ?? string.Empty, SQLITE_UTF8, SQLITE_TRANSIENT ); sqlite3EndBenignMalloc(); db.errCode = p.rc; sqlite3DbFree( db, ref p.zErrMsg ); p.zErrMsg = string.Empty; } //else if ( p.rc != 0 ) //{ // sqlite3Error( db, p.rc, 0 ); //} //else //{ // sqlite3Error( db, SQLITE_OK, 0 ); //} if ( p.runOnlyOnce != 0 ) p.expired = true; } else if ( p.rc != 0 && p.expired ) { /* The expired flag was set on the VDBE before the first call ** to sqlite3_step(). For consistency (since sqlite3_step() was ** called), set the database error in this case as well. */ sqlite3Error( db, p.rc, 0 ); sqlite3ValueSetStr( db.pErr, -1, p.zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT ); sqlite3DbFree( db, ref p.zErrMsg ); p.zErrMsg = string.Empty; } /* Reclaim all memory used by the VDBE */ Cleanup( p ); /* Save profiling information from this VDBE run. */ #if VDBE_PROFILE && TODO { FILE *out = fopen("vdbe_profile.out", "a"); if( out ){ int i; fprintf(out, "---- "); for(i=0; i0 ? p.aOp[i].cycles/p.aOp[i].cnt : 0 ); sqlite3VdbePrintOp(out, i, p.aOp[i]); } fclose(out); } } #endif p.magic = VDBE_MAGIC_INIT; return p.rc & db.errMask; } /* ** Clean up and delete a VDBE after execution. Return an integer which is ** the result code. Write any error message text into pzErrMsg. */ static int sqlite3VdbeFinalize( ref Vdbe p ) { int rc = SQLITE_OK; if ( p.magic == VDBE_MAGIC_RUN || p.magic == VDBE_MAGIC_HALT ) { rc = sqlite3VdbeReset( p ); Debug.Assert( ( rc & p.db.errMask ) == rc ); } sqlite3VdbeDelete( ref p ); return rc; } /* ** Call the destructor for each auxdata entry in pVdbeFunc for which ** the corresponding bit in mask is clear. Auxdata entries beyond 31 ** are always destroyed. To destroy all auxdata entries, call this ** routine with mask==0. */ static void sqlite3VdbeDeleteAuxData( VdbeFunc pVdbeFunc, int mask ) { int i; for ( i = 0; i < pVdbeFunc.nAux; i++ ) { AuxData pAux = pVdbeFunc.apAux[i]; if ( ( i > 31 || ( mask & ( ( (u32)1 ) << i ) ) == 0 && pAux.pAux != null ) ) { if ( pAux.pAux != null && pAux.pAux is IDisposable ) { (pAux.pAux as IDisposable).Dispose(); } pAux.pAux = null; } } } /* ** Free all memory associated with the Vdbe passed as the second argument. ** The difference between this function and sqlite3VdbeDelete() is that ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with ** the database connection. */ static void sqlite3VdbeDeleteObject( sqlite3 db, ref Vdbe p ) { SubProgram pSub, pNext; int i; Debug.Assert( p.db == null || p.db == db ); releaseMemArray( p.aVar, p.nVar ); releaseMemArray( p.aColName, p.nResColumn, COLNAME_N ); for ( pSub = p.pProgram; pSub != null; pSub = pNext ) { pNext = pSub.pNext; vdbeFreeOpArray( db, ref pSub.aOp, pSub.nOp ); sqlite3DbFree( db, ref pSub ); } //for ( i = p->nzVar - 1; i >= 0; i-- ) // sqlite3DbFree( db, p.azVar[i] ); vdbeFreeOpArray( db, ref p.aOp, p.nOp ); sqlite3DbFree( db, ref p.aLabel ); sqlite3DbFree( db, ref p.aColName ); sqlite3DbFree( db, ref p.zSql ); sqlite3DbFree( db, ref p.pFree ); // Free memory allocated from db within p //sqlite3DbFree( db, p ); } /* ** Delete an entire VDBE. */ static void sqlite3VdbeDelete( ref Vdbe p ) { sqlite3 db; if ( NEVER( p == null ) ) return; Cleanup( p ); db = p.db; if ( p.pPrev != null ) { p.pPrev.pNext = p.pNext; } else { Debug.Assert( db.pVdbe == p ); db.pVdbe = p.pNext; } if ( p.pNext != null ) { p.pNext.pPrev = p.pPrev; } p.magic = VDBE_MAGIC_DEAD; p.db = null; sqlite3VdbeDeleteObject( db, ref p ); } /* ** Make sure the cursor p is ready to read or write the row to which it ** was last positioned. Return an error code if an OOM fault or I/O error ** prevents us from positioning the cursor to its correct position. ** ** If a MoveTo operation is pending on the given cursor, then do that ** MoveTo now. If no move is pending, check to see if the row has been ** deleted out from under the cursor and if it has, mark the row as ** a NULL row. ** ** If the cursor is already pointing to the correct row and that row has ** not been deleted out from under the cursor, then this routine is a no-op. */ static int sqlite3VdbeCursorMoveto( VdbeCursor p ) { if ( p.deferredMoveto ) { int res = 0; int rc; #if SQLITE_TEST //extern int sqlite3_search_count; #endif Debug.Assert( p.isTable ); rc = sqlite3BtreeMovetoUnpacked( p.pCursor, null, p.movetoTarget, 0, ref res ); if ( rc != 0 ) return rc; p.lastRowid = p.movetoTarget; if ( res != 0 ) return SQLITE_CORRUPT_BKPT(); p.rowidIsValid = true; #if SQLITE_TEST #if !TCLSH sqlite3_search_count++; #else sqlite3_search_count.iValue++; #endif #endif p.deferredMoveto = false; p.cacheStatus = CACHE_STALE; } else if ( ALWAYS( p.pCursor != null ) ) { int hasMoved = 0; int rc = sqlite3BtreeCursorHasMoved( p.pCursor, ref hasMoved ); if ( rc != 0 ) return rc; if ( hasMoved != 0 ) { p.cacheStatus = CACHE_STALE; p.nullRow = true; } } return SQLITE_OK; } /* ** The following functions: ** ** sqlite3VdbeSerialType() ** sqlite3VdbeSerialTypeLen() ** sqlite3VdbeSerialLen() ** sqlite3VdbeSerialPut() ** sqlite3VdbeSerialGet() ** ** encapsulate the code that serializes values for storage in SQLite ** data and index records. Each serialized value consists of a ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned ** integer, stored as a varint. ** ** In an SQLite index record, the serial type is stored directly before ** the blob of data that it corresponds to. In a table record, all serial ** types are stored at the start of the record, and the blobs of data at ** the end. Hence these functions allow the caller to handle the ** serial-type and data blob seperately. ** ** The following table describes the various storage classes for data: ** ** serial type bytes of data type ** -------------- --------------- --------------- ** 0 0 NULL ** 1 1 signed integer ** 2 2 signed integer ** 3 3 signed integer ** 4 4 signed integer ** 5 6 signed integer ** 6 8 signed integer ** 7 8 IEEE float ** 8 0 Integer constant 0 ** 9 0 Integer constant 1 ** 10,11 reserved for expansion ** N>=12 and even (N-12)/2 BLOB ** N>=13 and odd (N-13)/2 text ** ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions ** of SQLite will not understand those serial types. */ /* ** Return the serial-type for the value stored in pMem. */ static u32 sqlite3VdbeSerialType( Mem pMem, int file_format ) { int flags = pMem.flags; int n; if ( ( flags & MEM_Null ) != 0 ) { return 0; } if ( ( flags & MEM_Int ) != 0 ) { /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ const i64 MAX_6BYTE = ( ( ( (i64)0x00008000 ) << 32 ) - 1 ); i64 i = pMem.u.i; u64 u; if ( file_format >= 4 && ( i & 1 ) == i ) { return 8 + (u32)i; } if ( i < 0 ) { if ( i < ( -MAX_6BYTE ) ) return 6; /* Previous test prevents: u = -(-9223372036854775808) */ u = (u64)( -i ); } else { u = (u64)i; } if ( u <= 127 ) return 1; if ( u <= 32767 ) return 2; if ( u <= 8388607 ) return 3; if ( u <= 2147483647 ) return 4; if ( u <= MAX_6BYTE ) return 5; return 6; } if ( ( flags & MEM_Real ) != 0 ) { return 7; } Debug.Assert( /* pMem.db.mallocFailed != 0 || */ ( flags & ( MEM_Str | MEM_Blob ) ) != 0 ); n = pMem.n; if ( ( flags & MEM_Zero ) != 0 ) { n += pMem.u.nZero; } else if ( ( flags & MEM_Blob ) != 0 ) { n = pMem.zBLOB != null ? pMem.zBLOB.Length : pMem.z != null ? pMem.z.Length : 0; } else { if ( pMem.z != null ) n = Encoding.UTF8.GetByteCount( pMem.n < pMem.z.Length ? pMem.z.Substring( 0, pMem.n ) : pMem.z ); else n = pMem.zBLOB.Length; pMem.n = n; } Debug.Assert( n >= 0 ); return (u32)( ( n * 2 ) + 12 + ( ( ( flags & MEM_Str ) != 0 ) ? 1 : 0 ) ); } /* ** Return the length of the data corresponding to the supplied serial-type. */ static u32[] aSize = new u32[] { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; static u32 sqlite3VdbeSerialTypeLen( u32 serial_type ) { if ( serial_type >= 12 ) { return (u32)( ( serial_type - 12 ) / 2 ); } else { return aSize[serial_type]; } } /* ** If we are on an architecture with mixed-endian floating ** points (ex: ARM7) then swap the lower 4 bytes with the ** upper 4 bytes. Return the result. ** ** For most architectures, this is a no-op. ** ** (later): It is reported to me that the mixed-endian problem ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems ** that early versions of GCC stored the two words of a 64-bit ** float in the wrong order. And that error has been propagated ** ever since. The blame is not necessarily with GCC, though. ** GCC might have just copying the problem from a prior compiler. ** I am also told that newer versions of GCC that follow a different ** ABI get the byte order right. ** ** Developers using SQLite on an ARM7 should compile and run their ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG ** enabled, some Debug.Asserts below will ensure that the byte order of ** floating point values is correct. ** ** (2007-08-30) Frank van Vugt has studied this problem closely ** and has send his findings to the SQLite developers. Frank ** writes that some Linux kernels offer floating point hardware ** emulation that uses only 32-bit mantissas instead of a full ** 48-bits as required by the IEEE standard. (This is the ** CONFIG_FPE_FASTFPE option.) On such systems, floating point ** byte swapping becomes very complicated. To avoid problems, ** the necessary byte swapping is carried out using a 64-bit integer ** rather than a 64-bit float. Frank assures us that the code here ** works for him. We, the developers, have no way to independently ** verify this, but Frank seems to know what he is talking about ** so we trust him. */ #if SQLITE_MIXED_ENDIAN_64BIT_FLOAT //static u64 floatSwap(u64 in){ // union { // u64 r; // u32 i[2]; // } u; // u32 t; // u.r = in; // t = u.i[0]; // u.i[0] = u.i[1]; // u.i[1] = t; // return u.r; //} //# define swapMixedEndianFloat(X) X = floatSwap(X) #else //# define swapMixedEndianFloat(X) #endif /* ** Write the serialized data blob for the value stored in pMem into ** buf. It is assumed that the caller has allocated sufficient space. ** Return the number of bytes written. ** ** nBuf is the amount of space left in buf[]. nBuf must always be ** large enough to hold the entire field. Except, if the field is ** a blob with a zero-filled tail, then buf[] might be just the right ** size to hold everything except for the zero-filled tail. If buf[] ** is only big enough to hold the non-zero prefix, then only write that ** prefix into buf[]. But if buf[] is large enough to hold both the ** prefix and the tail then write the prefix and set the tail to all ** zeros. ** ** Return the number of bytes actually written into buf[]. The number ** of bytes in the zero-filled tail is included in the return value only ** if those bytes were zeroed in buf[]. */ static u32 sqlite3VdbeSerialPut( byte[] buf, int offset, int nBuf, Mem pMem, int file_format ) { u32 serial_type = sqlite3VdbeSerialType( pMem, file_format ); u32 len; /* Integer and Real */ if ( serial_type <= 7 && serial_type > 0 ) { u64 v; u32 i; if ( serial_type == 7 ) { //Debug.Assert( sizeof( v) == sizeof(pMem.r)); #if WINDOWS_PHONE || WINDOWS_MOBILE v = (ulong)BitConverter.ToInt64(BitConverter.GetBytes(pMem.r),0); #else v = (ulong)BitConverter.DoubleToInt64Bits( pMem.r );// memcpy( &v, pMem.r, v ).Length; #endif #if SQLITE_MIXED_ENDIAN_64BIT_FLOAT swapMixedEndianFloat( v ); #endif } else { v = (ulong)pMem.u.i; } len = i = sqlite3VdbeSerialTypeLen( serial_type ); Debug.Assert( len <= (u32)nBuf ); while ( i-- != 0 ) { buf[offset + i] = (u8)( v & 0xFF ); v >>= 8; } return len; } /* String or blob */ if ( serial_type >= 12 ) { // TO DO -- PASS TESTS WITH THIS ON Debug.Assert( pMem.n + ( ( pMem.flags & MEM_Zero ) != 0 ? pMem.u.nZero : 0 ) == (int)sqlite3VdbeSerialTypeLen( serial_type ) ); Debug.Assert( pMem.n <= nBuf ); if ( ( len = (u32)pMem.n ) != 0 ) if ( pMem.zBLOB == null && string.IsNullOrEmpty( pMem.z ) ) { } else if ( pMem.zBLOB != null && (( pMem.flags & MEM_Blob ) != 0 || pMem.z == null )) Buffer.BlockCopy( pMem.zBLOB, 0, buf, offset, (int)len );//memcpy( buf, pMem.z, len ); else Buffer.BlockCopy( Encoding.UTF8.GetBytes( pMem.z ), 0, buf, offset, (int)len );//memcpy( buf, pMem.z, len ); if ( ( pMem.flags & MEM_Zero ) != 0 ) { len += (u32)pMem.u.nZero; Debug.Assert( nBuf >= 0 ); if ( len > (u32)nBuf ) { len = (u32)nBuf; } Array.Clear( buf, offset + pMem.n, (int)( len - pMem.n ) );// memset( &buf[pMem.n], 0, len - pMem.n ); } return len; } /* NULL or constants 0 or 1 */ return 0; } /* ** Deserialize the data blob pointed to by buf as serial type serial_type ** and store the result in pMem. Return the number of bytes read. */ static u32 sqlite3VdbeSerialGet( byte[] buf, /* Buffer to deserialize from */ int offset, /* Offset into Buffer */ u32 serial_type, /* Serial type to deserialize */ Mem pMem /* Memory cell to write value into */ ) { switch ( serial_type ) { case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ case 0: { /* NULL */ pMem.flags = MEM_Null; pMem.n = 0; pMem.z = null; pMem.zBLOB = null; break; } case 1: { /* 1-byte signed integer */ pMem.u.i = (sbyte)buf[offset + 0]; pMem.flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ pMem.u.i = (int)( ( ( (sbyte)buf[offset + 0] ) << 8 ) | buf[offset + 1] ); pMem.flags = MEM_Int; return 2; } case 3: { /* 3-byte signed integer */ pMem.u.i = (int)( ( ( (sbyte)buf[offset + 0] ) << 16 ) | ( buf[offset + 1] << 8 ) | buf[offset + 2] ); pMem.flags = MEM_Int; return 3; } case 4: { /* 4-byte signed integer */ pMem.u.i = (int)( ( (sbyte)buf[offset + 0] << 24 ) | ( buf[offset + 1] << 16 ) | ( buf[offset + 2] << 8 ) | buf[offset + 3] ); pMem.flags = MEM_Int; return 4; } case 5: { /* 6-byte signed integer */ u64 x = (ulong)( ( ( (sbyte)buf[offset + 0] ) << 8 ) | buf[offset + 1] ); u32 y = (u32)( ( buf[offset + 2] << 24 ) | ( buf[offset + 3] << 16 ) | ( buf[offset + 4] << 8 ) | buf[offset + 5] ); x = ( x << 32 ) | y; pMem.u.i = (i64)x; pMem.flags = MEM_Int; return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ u64 x; u32 y; #if !NDEBUG && !SQLITE_OMIT_FLOATING_POINT /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ const u64 t1 = ( (u64)0x3ff00000 ) << 32; const double r1 = 1.0; u64 t2 = t1; #if SQLITE_MIXED_ENDIAN_64BIT_FLOAT swapMixedEndianFloat(t2); #endif Debug.Assert( sizeof( double ) == sizeof( u64 ) && memcmp( BitConverter.GetBytes( r1 ), BitConverter.GetBytes( t2 ), sizeof( double ) ) == 0 );//Debug.Assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, t2, sizeof(r1))==0 ); #endif x = (u64)( ( buf[offset + 0] << 24 ) | ( buf[offset + 1] << 16 ) | ( buf[offset + 2] << 8 ) | buf[offset + 3] ); y = (u32)( ( buf[offset + 4] << 24 ) | ( buf[offset + 5] << 16 ) | ( buf[offset + 6] << 8 ) | buf[offset + 7] ); x = ( x << 32 ) | y; if ( serial_type == 6 ) { pMem.u.i = (i64)x; pMem.flags = MEM_Int; } else { Debug.Assert( sizeof( i64 ) == 8 && sizeof( double ) == 8 ); #if SQLITE_MIXED_ENDIAN_64BIT_FLOAT swapMixedEndianFloat(x); #endif #if WINDOWS_PHONE || WINDOWS_MOBILE pMem.r = BitConverter.ToDouble(BitConverter.GetBytes((long)x), 0); #else pMem.r = BitConverter.Int64BitsToDouble( (long)x );// memcpy(pMem.r, x, sizeof(x)) #endif pMem.flags = (u16)( sqlite3IsNaN( pMem.r ) ? MEM_Null : MEM_Real ); } return 8; } case 8: /* Integer 0 */ case 9: { /* Integer 1 */ pMem.u.i = serial_type - 8; pMem.flags = MEM_Int; return 0; } default: { u32 len = ( serial_type - 12 ) / 2; pMem.n = (int)len; pMem.xDel = null; if ( ( serial_type & 0x01 ) != 0 ) { pMem.flags = MEM_Str | MEM_Ephem; if ( len <= buf.Length - offset ) { pMem.z = Encoding.UTF8.GetString( buf, offset, (int)len );//memcpy( buf, pMem.z, len ); pMem.n = pMem.z.Length; } else { pMem.z = string.Empty; // Corrupted Data pMem.n = 0; } pMem.zBLOB = null; } else { pMem.z = null; pMem.zBLOB = sqlite3Malloc( (int)len ); pMem.flags = MEM_Blob | MEM_Ephem; if ( len <= buf.Length - offset ) { Buffer.BlockCopy( buf, offset, pMem.zBLOB, 0, (int)len );//memcpy( buf, pMem.z, len ); } else { Buffer.BlockCopy( buf, offset, pMem.zBLOB, 0, buf.Length - offset - 1 ); } } return len; } } return 0; } static int sqlite3VdbeSerialGet( byte[] buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem pMem /* Memory cell to write value into */ ) { switch ( serial_type ) { case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ case 0: { /* NULL */ pMem.flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem.u.i = (sbyte)buf[0]; pMem.flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ pMem.u.i = (int)( ( ( buf[0] ) << 8 ) | buf[1] ); pMem.flags = MEM_Int; return 2; } case 3: { /* 3-byte signed integer */ pMem.u.i = (int)( ( ( buf[0] ) << 16 ) | ( buf[1] << 8 ) | buf[2] ); pMem.flags = MEM_Int; return 3; } case 4: { /* 4-byte signed integer */ pMem.u.i = (int)( ( buf[0] << 24 ) | ( buf[1] << 16 ) | ( buf[2] << 8 ) | buf[3] ); pMem.flags = MEM_Int; return 4; } case 5: { /* 6-byte signed integer */ u64 x = (ulong)( ( ( buf[0] ) << 8 ) | buf[1] ); u32 y = (u32)( ( buf[2] << 24 ) | ( buf[3] << 16 ) | ( buf[4] << 8 ) | buf[5] ); x = ( x << 32 ) | y; pMem.u.i = (i64)x; pMem.flags = MEM_Int; return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ u64 x; u32 y; #if !NDEBUG && !SQLITE_OMIT_FLOATING_POINT /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ const u64 t1 = ( (u64)0x3ff00000 ) << 32; const double r1 = 1.0; u64 t2 = t1; #if SQLITE_MIXED_ENDIAN_64BIT_FLOAT swapMixedEndianFloat(t2); #endif Debug.Assert( sizeof( double ) == sizeof( u64 ) && memcmp( BitConverter.GetBytes( r1 ), BitConverter.GetBytes( t2 ), sizeof( double ) ) == 0 );//Debug.Assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, t2, sizeof(r1))==0 ); #endif x = (u64)( ( buf[0] << 24 ) | ( buf[1] << 16 ) | ( buf[2] << 8 ) | buf[3] ); y = (u32)( ( buf[4] << 24 ) | ( buf[5] << 16 ) | ( buf[6] << 8 ) | buf[7] ); x = ( x << 32 ) | y; if ( serial_type == 6 ) { pMem.u.i = (i64)x; pMem.flags = MEM_Int; } else { Debug.Assert( sizeof( i64 ) == 8 && sizeof( double ) == 8 ); #if SQLITE_MIXED_ENDIAN_64BIT_FLOAT swapMixedEndianFloat(x); #endif #if WINDOWS_PHONE || WINDOWS_MOBILE pMem.r = BitConverter.ToDouble(BitConverter.GetBytes((long)x), 0); #else pMem.r = BitConverter.Int64BitsToDouble( (long)x );// memcpy(pMem.r, x, sizeof(x)) #endif pMem.flags = MEM_Real; } return 8; } case 8: /* Integer 0 */ case 9: { /* Integer 1 */ pMem.u.i = serial_type - 8; pMem.flags = MEM_Int; return 0; } default: { int len = (int)( ( serial_type - 12 ) / 2 ); pMem.xDel = null; if ( ( serial_type & 0x01 ) != 0 ) { pMem.flags = MEM_Str | MEM_Ephem; pMem.z = Encoding.UTF8.GetString( buf, 0, len );//memcpy( buf, pMem.z, len ); pMem.n = pMem.z.Length;// len; pMem.zBLOB = null; } else { pMem.flags = MEM_Blob | MEM_Ephem; pMem.zBLOB = sqlite3Malloc( len ); buf.CopyTo( pMem.zBLOB, 0 ); pMem.n = len;// len; pMem.z = null; } return len; } } return 0; } /* ** Given the nKey-byte encoding of a record in pKey[], parse the ** record into a UnpackedRecord structure. Return a pointer to ** that structure. ** ** The calling function might provide szSpace bytes of memory ** space at pSpace. This space can be used to hold the returned ** VDbeParsedRecord structure if it is large enough. If it is ** not big enough, space is obtained from sqlite3Malloc(). ** ** The returned structure should be closed by a call to ** sqlite3VdbeDeleteUnpackedRecord(). */ static UnpackedRecord sqlite3VdbeRecordUnpack( KeyInfo pKeyInfo, /* Information about the record format */ int nKey, /* Size of the binary record */ byte[] pKey, /* The binary record */ UnpackedRecord pSpace, // char *pSpace, /* Unaligned space available to hold the object */ int szSpace /* Size of pSpace[] in bytes */ ) { byte[] aKey = pKey; UnpackedRecord p; /* The unpacked record that we will return */ int nByte; /* Memory space needed to hold p, in bytes */ int d; u32 idx; int u; /* Unsigned loop counter */ int szHdr = 0; Mem pMem; int nOff; /* Increase pSpace by this much to 8-byte align it */ /* ** We want to shift the pointer pSpace up such that it is 8-byte aligned. ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift ** it by. If pSpace is already 8-byte aligned, nOff should be zero. */ //nOff = ( 8 - ( SQLITE_PTR_TO_INT( pSpace ) & 7 ) ) & 7; //pSpace += nOff; //szSpace -= nOff; //nByte = ROUND8( sizeof( UnpackedRecord ) ) + sizeof( Mem ) * ( pKeyInfo->nField + 1 ); //if ( nByte > szSpace) //{ //var p = new UnpackedRecord();//sqlite3DbMallocRaw(pKeyInfo.db, nByte); // if ( p == null ) return null; // p.flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; //} //else { p = pSpace;//(UnpackedRecord)pSpace; p.flags = UNPACKED_NEED_DESTROY; } p.pKeyInfo = pKeyInfo; p.nField = (u16)( pKeyInfo.nField + 1 ); //p->aMem = pMem = (Mem)&( (char)p )[ROUND8( sizeof( UnpackedRecord ) )]; //Debug.Assert( EIGHT_BYTE_ALIGNMENT( pMem ) ); p.aMem = new Mem[p.nField + 1]; idx = (u32)getVarint32( aKey, 0, out szHdr );// GetVarint( aKey, szHdr ); d = (int)szHdr; u = 0; while ( idx < (int)szHdr && u < p.nField && d <= nKey ) { p.aMem[u] = sqlite3Malloc( p.aMem[u] ); pMem = p.aMem[u]; u32 serial_type = 0; idx += (u32)getVarint32( aKey, idx, out serial_type );// GetVarint( aKey + idx, serial_type ); pMem.enc = pKeyInfo.enc; pMem.db = pKeyInfo.db; /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ //pMem.zMalloc = null; d += (int)sqlite3VdbeSerialGet( aKey, d, serial_type, pMem ); //pMem++; u++; } Debug.Assert( u <= pKeyInfo.nField + 1 ); p.nField = (u16)u; return p;// (void)p; } /* ** This routine destroys a UnpackedRecord object. */ static void sqlite3VdbeDeleteUnpackedRecord( UnpackedRecord p ) { #if SQLITE_DEBUG int i; Mem pMem; Debug.Assert( p != null ); Debug.Assert( ( p.flags & UNPACKED_NEED_DESTROY ) != 0 ); //for ( i = 0, pMem = p->aMem ; i < p->nField ; i++, pMem++ ) //{ // /* The unpacked record is always constructed by the // ** sqlite3VdbeUnpackRecord() function above, which makes all // ** strings and blobs static. And none of the elements are // ** ever transformed, so there is never anything to delete. // */ // if ( NEVER( pMem->zMalloc ) ) sqlite3VdbeMemRelease( pMem ); //} #endif if ( ( p.flags & UNPACKED_NEED_FREE ) != 0 ) { sqlite3DbFree( p.pKeyInfo.db, ref p.aMem ); p = null; } } /* ** This function compares the two table rows or index records ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero ** or positive integer if key1 is less than, equal to or ** greater than key2. The {nKey1, pKey1} key must be a blob ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 ** key must be a parsed key such as obtained from ** sqlite3VdbeParseRecord. ** ** Key1 and Key2 do not have to contain the same number of fields. ** The key with fewer fields is usually compares less than the ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set ** and the common prefixes are equal, then key1 is less than key2. ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are ** equal, then the keys are considered to be equal and ** the parts beyond the common prefix are ignored. ** ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of ** the header of pKey1 is ignored. It is assumed that pKey1 is ** an index key, and thus ends with a rowid value. The last byte ** of the header will therefore be the serial type of the rowid: ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types. ** The serial type of the final rowid will always be a single byte. ** By ignoring this last byte of the header, we force the comparison ** to ignore the rowid at the end of key1. */ static Mem mem1 = new Mem(); // ALTERNATE FORM for C# static int sqlite3VdbeRecordCompare( int nKey1, byte[] pKey1, /* Left key */ UnpackedRecord pPKey2 /* Right key */ ) { return sqlite3VdbeRecordCompare( nKey1, pKey1, 0, pPKey2 ); } static int sqlite3VdbeRecordCompare( int nKey1, byte[] pKey1, /* Left key */ int offset, UnpackedRecord pPKey2 /* Right key */ ) { int d1; /* Offset into aKey[] of next data element */ u32 idx1; /* Offset into aKey[] of next header element */ u32 szHdr1; /* Number of bytes in header */ int i = 0; int nField; int rc = 0; ////byte[] aKey1 = new byte[pKey1.Length - offset]; //Buffer.BlockCopy( pKey1, offset, aKey1, 0, aKey1.Length ); KeyInfo pKeyInfo = pPKey2.pKeyInfo; mem1.enc = pKeyInfo.enc; mem1.db = pKeyInfo.db; /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ // VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by Debug.Assert() statements */ /* Compilers may complain that mem1.u.i is potentially uninitialized. ** We could initialize it, as shown here, to silence those complaints. ** But in fact, mem1.u.i will never actually be used uninitialized, and doing ** the unnecessary initialization has a measurable negative performance ** impact, since this routine is a very high runner. And so, we choose ** to ignore the compiler warnings and leave this variable uninitialized. */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = (u32)( ( szHdr1 = pKey1[offset] ) <= 0x7f ? 1 : getVarint32( pKey1, offset, out szHdr1 ) );// GetVarint( aKey1, szHdr1 ); d1 = (int)szHdr1; if ( ( pPKey2.flags & UNPACKED_IGNORE_ROWID ) != 0 ) { szHdr1--; } nField = pKeyInfo.nField; while ( idx1 < szHdr1 && i < pPKey2.nField ) { u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += (u32)( ( serial_type1 = pKey1[offset + idx1] ) <= 0x7f ? 1 : getVarint32( pKey1, (uint)( offset + idx1 ), out serial_type1 ) ); //GetVarint( aKey1 + idx1, serial_type1 ); if ( d1 <= 0 || d1 >= nKey1 && sqlite3VdbeSerialTypeLen( serial_type1 ) > 0 ) break; /* Extract the values to be compared. */ d1 += (int)sqlite3VdbeSerialGet( pKey1, offset + d1, serial_type1, mem1 );//sqlite3VdbeSerialGet( aKey1, d1, serial_type1, mem1 ); /* Do the comparison */ rc = sqlite3MemCompare( mem1, pPKey2.aMem[i], i < nField ? pKeyInfo.aColl[i] : null ); if ( rc != 0 ) { //Debug.Assert( mem1.zMalloc==null ); /* See comment below */ /* Invert the result if we are using DESC sort order. */ if ( pKeyInfo.aSortOrder != null && i < nField && pKeyInfo.aSortOrder[i] != 0 ) { rc = -rc; } /* If the PREFIX_SEARCH flag is set and all fields except the final ** rowid field were equal, then clear the PREFIX_SEARCH flag and set ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). ** This is used by the OP_IsUnique opcode. */ if ( ( pPKey2.flags & UNPACKED_PREFIX_SEARCH ) != 0 && i == ( pPKey2.nField - 1 ) ) { Debug.Assert( idx1 == szHdr1 && rc != 0 ); Debug.Assert( ( mem1.flags & MEM_Int ) != 0 ); pPKey2.flags = (ushort)( pPKey2.flags & ~UNPACKED_PREFIX_SEARCH ); pPKey2.rowid = mem1.u.i; } return rc; } i++; } /* No memory allocation is ever used on mem1. Prove this using ** the following Debug.Assert(). If the Debug.Assert() fails, it indicates a ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ //Debug.Assert( mem1.zMalloc==null ); /* rc==0 here means that one of the keys ran out of fields and ** all the fields up to that point were equal. If the UNPACKED_INCRKEY ** flag is set, then break the tie by treating key2 as larger. ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes ** are considered to be equal. Otherwise, the longer key is the ** larger. As it happens, the pPKey2 will always be the longer ** if there is a difference. */ Debug.Assert( rc == 0 ); if ( ( pPKey2.flags & UNPACKED_INCRKEY ) != 0 ) { rc = -1; } else if ( ( pPKey2.flags & UNPACKED_PREFIX_MATCH ) != 0 ) { /* Leave rc==0 */ } else if ( idx1 < szHdr1 ) { rc = 1; } return rc; } /* ** pCur points at an index entry created using the OP_MakeRecord opcode. ** Read the rowid (the last field in the record) and store it in *rowid. ** Return SQLITE_OK if everything works, or an error code otherwise. ** ** pCur might be pointing to text obtained from a corrupt database file. ** So the content cannot be trusted. Do appropriate checks on the content. */ static int sqlite3VdbeIdxRowid( sqlite3 db, BtCursor pCur, ref i64 rowid ) { i64 nCellKey = 0; int rc; u32 szHdr = 0; /* Size of the header */ u32 typeRowid = 0; /* Serial type of the rowid */ u32 lenRowid; /* Size of the rowid */ Mem m = null; Mem v = null; v = sqlite3Malloc( v ); UNUSED_PARAMETER( db ); /* Get the size of the index entry. Only indices entries of less ** than 2GiB are support - anything large must be database corruption. ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so ** this code can safely assume that nCellKey is 32-bits */ Debug.Assert( sqlite3BtreeCursorIsValid( pCur ) ); rc = sqlite3BtreeKeySize( pCur, ref nCellKey ); Debug.Assert( rc == SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ Debug.Assert( ( (u32)nCellKey & SQLITE_MAX_U32 ) == (u64)nCellKey ); /* Read in the complete content of the index entry */ m = sqlite3Malloc( m ); // memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree( pCur, 0, (int)nCellKey, true, m ); if ( rc != 0 ) { return rc; } /* The index entry must begin with a header size */ getVarint32( m.zBLOB, 0, out szHdr ); testcase( szHdr == 3 ); testcase( szHdr == m.n ); if ( unlikely( szHdr < 3 || (int)szHdr > m.n ) ) { goto idx_rowid_corruption; } /* The last field of the index should be an integer - the ROWID. ** Verify that the last entry really is an integer. */ getVarint32( m.zBLOB, szHdr - 1, out typeRowid ); testcase( typeRowid == 1 ); testcase( typeRowid == 2 ); testcase( typeRowid == 3 ); testcase( typeRowid == 4 ); testcase( typeRowid == 5 ); testcase( typeRowid == 6 ); testcase( typeRowid == 8 ); testcase( typeRowid == 9 ); if ( unlikely( typeRowid < 1 || typeRowid > 9 || typeRowid == 7 ) ) { goto idx_rowid_corruption; } lenRowid = (u32)sqlite3VdbeSerialTypeLen( typeRowid ); testcase( (u32)m.n == szHdr + lenRowid ); if ( unlikely( (u32)m.n < szHdr + lenRowid ) ) { goto idx_rowid_corruption; } /* Fetch the integer off the end of the index record */ sqlite3VdbeSerialGet( m.zBLOB, (int)( m.n - lenRowid ), typeRowid, v ); rowid = v.u.i; sqlite3VdbeMemRelease( m ); return SQLITE_OK; /* Jump here if database corruption is detected after m has been ** allocated. Free the m object and return SQLITE_CORRUPT. */ idx_rowid_corruption: //testcase( m.zMalloc != 0 ); sqlite3VdbeMemRelease( m ); return SQLITE_CORRUPT_BKPT(); } /* ** Compare the key of the index entry that cursor pC is pointing to against ** the key string in pUnpacked. Write into *pRes a number ** that is negative, zero, or positive if pC is less than, equal to, ** or greater than pUnpacked. Return SQLITE_OK on success. ** ** pUnpacked is either created without a rowid or is truncated so that it ** omits the rowid at the end. The rowid at the end of the index entry ** is ignored as well. Hence, this routine only compares the prefixes ** of the keys prior to the final rowid, not the entire key. */ static int sqlite3VdbeIdxKeyCompare( VdbeCursor pC, /* The cursor to compare against */ UnpackedRecord pUnpacked, /* Unpacked version of key to compare against */ ref int res /* Write the comparison result here */ ) { i64 nCellKey = 0; int rc; BtCursor pCur = pC.pCursor; Mem m = null; Debug.Assert( sqlite3BtreeCursorIsValid( pCur ) ); rc = sqlite3BtreeKeySize( pCur, ref nCellKey ); Debug.Assert( rc == SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ /* nCellKey will always be between 0 and 0xffffffff because of the say ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ if ( nCellKey <= 0 || nCellKey > 0x7fffffff ) { res = 0; return SQLITE_CORRUPT_BKPT(); } m = sqlite3Malloc( m ); // memset(&m, 0, sizeof(m)); rc = sqlite3VdbeMemFromBtree( pC.pCursor, 0, (int)nCellKey, true, m ); if ( rc != 0 ) { return rc; } Debug.Assert( ( pUnpacked.flags & UNPACKED_IGNORE_ROWID ) != 0 ); res = sqlite3VdbeRecordCompare( m.n, m.zBLOB, pUnpacked ); sqlite3VdbeMemRelease( m ); return SQLITE_OK; } /* ** This routine sets the value to be returned by subsequent calls to ** sqlite3_changes() on the database handle 'db'. */ static void sqlite3VdbeSetChanges( sqlite3 db, int nChange ) { Debug.Assert( sqlite3_mutex_held( db.mutex ) ); db.nChange = nChange; db.nTotalChange += nChange; } /* ** Set a flag in the vdbe to update the change counter when it is finalised ** or reset. */ static void sqlite3VdbeCountChanges( Vdbe v ) { v.changeCntOn = true; } /* ** Mark every prepared statement associated with a database connection ** as expired. ** ** An expired statement means that recompilation of the statement is ** recommend. Statements expire when things happen that make their ** programs obsolete. Removing user-defined functions or collating ** sequences, or changing an authorization function are the types of ** things that make prepared statements obsolete. */ static void sqlite3ExpirePreparedStatements( sqlite3 db ) { Vdbe p; for ( p = db.pVdbe; p != null; p = p.pNext ) { p.expired = true; } } /* ** Return the database associated with the Vdbe. */ static sqlite3 sqlite3VdbeDb( Vdbe v ) { return v.db; } /* ** Return a pointer to an sqlite3_value structure containing the value bound ** parameter iVar of VM v. Except, if the value is an SQL NULL, return ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* ** constants) to the value before returning it. ** ** The returned value must be freed by the caller using sqlite3ValueFree(). */ static sqlite3_value sqlite3VdbeGetValue( Vdbe v, int iVar, u8 aff ) { Debug.Assert( iVar > 0 ); if ( v != null ) { Mem pMem = v.aVar[iVar - 1]; if ( 0 == ( pMem.flags & MEM_Null ) ) { sqlite3_value pRet = sqlite3ValueNew( v.db ); if ( pRet != null ) { sqlite3VdbeMemCopy( (Mem)pRet, pMem ); sqlite3ValueApplyAffinity( pRet, (char)aff, SQLITE_UTF8 ); sqlite3VdbeMemStoreType( (Mem)pRet ); } return pRet; } } return null; } /* ** Configure SQL variable iVar so that binding a new value to it signals ** to sqlite3_reoptimize() that re-preparing the statement may result ** in a better query plan. */ static void sqlite3VdbeSetVarmask( Vdbe v, int iVar ) { Debug.Assert( iVar > 0 ); if ( iVar > 32 ) { v.expmask = 0xffffffff; } else { v.expmask |= ( (u32)1 << ( iVar - 1 ) ); } } } }