using System; using System.Diagnostics; using System.Text; using Bitmask = System.UInt64; using i16 = System.Int16; using u8 = System.Byte; using u16 = System.UInt16; using u32 = System.UInt32; using sqlite3_int64 = System.Int64; namespace Community.CsharpSqlite { using sqlite3_value = Sqlite3.Mem; public partial class Sqlite3 { /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This module contains C code that generates VDBE code used to process ** the WHERE clause of SQL statements. This module is responsible for ** generating the code that loops through a table looking for applicable ** rows. Indices are selected and used to speed the search when doing ** so is applicable. Because this module is responsible for selecting ** indices, you might also think of this module as the "query optimizer". ************************************************************************* ** Included in SQLite3 port to C#-SQLite; 2008 Noah B Hart ** C#-SQLite is an independent reimplementation of the SQLite software library ** ** SQLITE_SOURCE_ID: 2011-05-19 13:26:54 ed1da510a239ea767a01dc332b667119fa3c908ecd7 ** ************************************************************************* */ //#include "sqliteInt.h" /* ** Trace output macros */ #if (SQLITE_TEST) || (SQLITE_DEBUG) static bool sqlite3WhereTrace = false; #endif #if (SQLITE_TEST) && (SQLITE_DEBUG) && TRACE //# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X static void WHERETRACE( string X, params object[] ap ) { if ( sqlite3WhereTrace ) sqlite3DebugPrintf( X, ap ); } #else //# define WHERETRACE(X) static void WHERETRACE( string X, params object[] ap ) { } #endif /* Forward reference */ //typedef struct WhereClause WhereClause; //typedef struct WhereMaskSet WhereMaskSet; //typedef struct WhereOrInfo WhereOrInfo; //typedef struct WhereAndInfo WhereAndInfo; //typedef struct WhereCost WhereCost; /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by AND operators, ** usually, or sometimes subexpressions separated by OR. ** ** All WhereTerms are collected into a single WhereClause structure. ** The following identity holds: ** ** WhereTerm.pWC.a[WhereTerm.idx] == WhereTerm ** ** When a term is of the form: ** ** X ** ** where X is a column name and is one of certain operators, ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the ** cursor number and column number for X. WhereTerm.eOperator records ** the using a bitmask encoding defined by WO_xxx below. The ** use of a bitmask encoding for the operator allows us to search ** quickly for terms that match any of several different operators. ** ** A WhereTerm might also be two or more subterms connected by OR: ** ** (t1.X ) OR (t1.Y ) OR .... ** ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR ** and the WhereTerm.u.pOrInfo field points to auxiliary information that ** is collected about the ** ** If a term in the WHERE clause does not match either of the two previous ** categories, then eOperator==0. The WhereTerm.pExpr field is still set ** to the original subexpression content and wtFlags is set up appropriately ** but no other fields in the WhereTerm object are meaningful. ** ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, ** but they do so indirectly. A single WhereMaskSet structure translates ** cursor number into bits and the translated bit is stored in the prereq ** fields. The translation is used in order to maximize the number of ** bits that will fit in a Bitmask. The VDBE cursor numbers might be ** spread out over the non-negative integers. For example, the cursor ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet ** translates these sparse cursor numbers into consecutive integers ** beginning with 0 in order to make the best possible use of the available ** bits in the Bitmask. So, in the example above, the cursor numbers ** would be mapped into integers 0 through 7. ** ** The number of terms in a join is limited by the number of bits ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite ** is only able to process joins with 64 or fewer tables. */ //typedef struct WhereTerm WhereTerm; public class WhereTerm { public Expr pExpr; /* Pointer to the subexpression that is this term */ public int iParent; /* Disable pWC.a[iParent] when this term disabled */ public int leftCursor; /* Cursor number of X in "X " */ public class _u { public int leftColumn; /* Column number of X in "X " */ public WhereOrInfo pOrInfo; /* Extra information if eOperator==WO_OR */ public WhereAndInfo pAndInfo; /* Extra information if eOperator==WO_AND */ } public _u u = new _u(); public u16 eOperator; /* A WO_xx value describing */ public u8 wtFlags; /* TERM_xxx bit flags. See below */ public u8 nChild; /* Number of children that must disable us */ public WhereClause pWC; /* The clause this term is part of */ public Bitmask prereqRight; /* Bitmask of tables used by pExpr.pRight */ public Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ }; /* ** Allowed values of WhereTerm.wtFlags */ //#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, ref pExpr) */ //#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ //#define TERM_CODED 0x04 /* This term is already coded */ //#define TERM_COPIED 0x08 /* Has a child */ //#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ //#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ //#define TERM_OR_OK 0x40 /* Used during OR-clause processing */ #if SQLITE_ENABLE_STAT2 //# define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ #else //# define TERM_VNULL 0x00 /* Disabled if not using stat2 */ #endif const int TERM_DYNAMIC = 0x01; /* Need to call sqlite3ExprDelete(db, ref pExpr) */ const int TERM_VIRTUAL = 0x02; /* Added by the optimizer. Do not code */ const int TERM_CODED = 0x04; /* This term is already coded */ const int TERM_COPIED = 0x08; /* Has a child */ const int TERM_ORINFO = 0x10; /* Need to free the WhereTerm.u.pOrInfo object */ const int TERM_ANDINFO = 0x20; /* Need to free the WhereTerm.u.pAndInfo obj */ const int TERM_OR_OK = 0x40; /* Used during OR-clause processing */ #if SQLITE_ENABLE_STAT2 const int TERM_VNULL = 0x80; /* Manufactured x>NULL or x<=NULL term */ #else const int TERM_VNULL = 0x00; /* Disabled if not using stat2 */ #endif /* ** An instance of the following structure holds all information about a ** WHERE clause. Mostly this is a container for one or more WhereTerms. */ public class WhereClause { public Parse pParse; /* The parser context */ public WhereMaskSet pMaskSet; /* Mapping of table cursor numbers to bitmasks */ public Bitmask vmask; /* Bitmask identifying virtual table cursors */ public u8 op; /* Split operator. TK_AND or TK_OR */ public int nTerm; /* Number of terms */ public int nSlot; /* Number of entries in a[] */ public WhereTerm[] a; /* Each a[] describes a term of the WHERE cluase */ #if (SQLITE_SMALL_STACK) public WhereTerm[] aStatic = new WhereTerm[1]; /* Initial static space for a[] */ #else public WhereTerm[] aStatic = new WhereTerm[8]; /* Initial static space for a[] */ #endif public void CopyTo( WhereClause wc ) { wc.pParse = this.pParse; wc.pMaskSet = new WhereMaskSet(); this.pMaskSet.CopyTo( wc.pMaskSet ); wc.op = this.op; wc.nTerm = this.nTerm; wc.nSlot = this.nSlot; wc.a = (WhereTerm[])this.a.Clone(); wc.aStatic = (WhereTerm[])this.aStatic.Clone(); } }; /* ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to ** a dynamically allocated instance of the following structure. */ public class WhereOrInfo { public WhereClause wc = new WhereClause();/* Decomposition into subterms */ public Bitmask indexable; /* Bitmask of all indexable tables in the clause */ }; /* ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to ** a dynamically allocated instance of the following structure. */ public class WhereAndInfo { public WhereClause wc = new WhereClause(); /* The subexpression broken out */ }; /* ** An instance of the following structure keeps track of a mapping ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. ** ** The VDBE cursor numbers are small integers contained in ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE ** clause, the cursor numbers might not begin with 0 and they might ** contain gaps in the numbering sequence. But we want to make maximum ** use of the bits in our bitmasks. This structure provides a mapping ** from the sparse cursor numbers into consecutive integers beginning ** with 0. ** ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<EXPR */ //#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ //#define WHERE_COLUMN_RANGE 0x00020000 /* xEXPR */ //#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ //#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ //#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ //#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */ //#define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */ //#define WHERE_TOP_LIMIT 0x00100000 /* xEXPR or x>=EXPR constraint */ //#define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x= 0; i-- )//, a++) { a = pWC.a[i]; if ( ( a.wtFlags & TERM_DYNAMIC ) != 0 ) { sqlite3ExprDelete( db, ref a.pExpr ); } if ( ( a.wtFlags & TERM_ORINFO ) != 0 ) { whereOrInfoDelete( db, a.u.pOrInfo ); } else if ( ( a.wtFlags & TERM_ANDINFO ) != 0 ) { whereAndInfoDelete( db, a.u.pAndInfo ); } } if ( pWC.a != pWC.aStatic ) { sqlite3DbFree( db, ref pWC.a ); } } /* ** Add a single new WhereTerm entry to the WhereClause object pWC. ** The new WhereTerm object is constructed from Expr p and with wtFlags. ** The index in pWC.a[] of the new WhereTerm is returned on success. ** 0 is returned if the new WhereTerm could not be added due to a memory ** allocation error. The memory allocation failure will be recorded in ** the db.mallocFailed flag so that higher-level functions can detect it. ** ** This routine will increase the size of the pWC.a[] array as necessary. ** ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility ** for freeing the expression p is Debug.Assumed by the WhereClause object pWC. ** This is true even if this routine fails to allocate a new WhereTerm. ** ** WARNING: This routine might reallocate the space used to store ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC.a[] array. */ static int whereClauseInsert( WhereClause pWC, Expr p, u8 wtFlags ) { WhereTerm pTerm; int idx; testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */ if ( pWC.nTerm >= pWC.nSlot ) { //WhereTerm pOld = pWC.a; //sqlite3 db = pWC.pParse.db; Array.Resize( ref pWC.a, pWC.nSlot * 2 ); //pWC.a = sqlite3DbMallocRaw(db, sizeof(pWC.a[0])*pWC.nSlot*2 ); //if( pWC.a==null ){ // if( wtFlags & TERM_DYNAMIC ){ // sqlite3ExprDelete(db, ref p); // } // pWC.a = pOld; // return 0; //} //memcpy(pWC.a, pOld, sizeof(pWC.a[0])*pWC.nTerm); //if( pOld!=pWC.aStatic ){ // sqlite3DbFree(db, ref pOld); //} //pWC.nSlot = sqlite3DbMallocSize(db, pWC.a)/sizeof(pWC.a[0]); pWC.nSlot = pWC.a.Length - 1; } pWC.a[idx = pWC.nTerm++] = new WhereTerm(); pTerm = pWC.a[idx]; pTerm.pExpr = p; pTerm.wtFlags = wtFlags; pTerm.pWC = pWC; pTerm.iParent = -1; return idx; } /* ** This routine identifies subexpressions in the WHERE clause where ** each subexpression is separated by the AND operator or some other ** operator specified in the op parameter. The WhereClause structure ** is filled with pointers to subexpressions. For example: ** ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) ** \________/ \_______________/ \________________/ ** slot[0] slot[1] slot[2] ** ** The original WHERE clause in pExpr is unaltered. All this routine ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ static void whereSplit( WhereClause pWC, Expr pExpr, int op ) { pWC.op = (u8)op; if ( pExpr == null ) return; if ( pExpr.op != op ) { whereClauseInsert( pWC, pExpr, 0 ); } else { whereSplit( pWC, pExpr.pLeft, op ); whereSplit( pWC, pExpr.pRight, op ); } } /* ** Initialize an expression mask set (a WhereMaskSet object) */ //#define initMaskSet(P) memset(P, 0, sizeof(*P)) /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ static Bitmask getMask( WhereMaskSet pMaskSet, int iCursor ) { int i; Debug.Assert( pMaskSet.n <= (int)sizeof( Bitmask ) * 8 ); for ( i = 0; i < pMaskSet.n; i++ ) { if ( pMaskSet.ix[i] == iCursor ) { return ( (Bitmask)1 ) << i; } } return 0; } /* ** Create a new mask for cursor iCursor. ** ** There is one cursor per table in the FROM clause. The number of ** tables in the FROM clause is limited by a test early in the ** sqlite3WhereBegin() routine. So we know that the pMaskSet.ix[] ** array will never overflow. */ static void createMask( WhereMaskSet pMaskSet, int iCursor ) { Debug.Assert( pMaskSet.n < ArraySize( pMaskSet.ix ) ); pMaskSet.ix[pMaskSet.n++] = iCursor; } /* ** This routine walks (recursively) an expression tree and generates ** a bitmask indicating which tables are used in that expression ** tree. ** ** In order for this routine to work, the calling function must have ** previously invoked sqlite3ResolveExprNames() on the expression. See ** the header comment on that routine for additional information. ** The sqlite3ResolveExprNames() routines looks for column names and ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to ** the VDBE cursor number of the table. This routine just has to ** translate the cursor numbers into bitmask values and OR all ** the bitmasks together. */ //static Bitmask exprListTableUsage(WhereMaskSet*, ExprList); //static Bitmask exprSelectTableUsage(WhereMaskSet*, Select); static Bitmask exprTableUsage( WhereMaskSet pMaskSet, Expr p ) { Bitmask mask = 0; if ( p == null ) return 0; if ( p.op == TK_COLUMN ) { mask = getMask( pMaskSet, p.iTable ); return mask; } mask = exprTableUsage( pMaskSet, p.pRight ); mask |= exprTableUsage( pMaskSet, p.pLeft ); if ( ExprHasProperty( p, EP_xIsSelect ) ) { mask |= exprSelectTableUsage( pMaskSet, p.x.pSelect ); } else { mask |= exprListTableUsage( pMaskSet, p.x.pList ); } return mask; } static Bitmask exprListTableUsage( WhereMaskSet pMaskSet, ExprList pList ) { int i; Bitmask mask = 0; if ( pList != null ) { for ( i = 0; i < pList.nExpr; i++ ) { mask |= exprTableUsage( pMaskSet, pList.a[i].pExpr ); } } return mask; } static Bitmask exprSelectTableUsage( WhereMaskSet pMaskSet, Select pS ) { Bitmask mask = 0; while ( pS != null ) { mask |= exprListTableUsage( pMaskSet, pS.pEList ); mask |= exprListTableUsage( pMaskSet, pS.pGroupBy ); mask |= exprListTableUsage( pMaskSet, pS.pOrderBy ); mask |= exprTableUsage( pMaskSet, pS.pWhere ); mask |= exprTableUsage( pMaskSet, pS.pHaving ); pS = pS.pPrior; } return mask; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", and "IN". ** ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be ** of one of the following forms: column = expression column > expression ** column >= expression column < expression column <= expression ** expression = column expression > column expression >= column ** expression < column expression <= column column IN ** (expression-list) column IN (subquery) column IS NULL */ static bool allowedOp( int op ) { Debug.Assert( TK_GT > TK_EQ && TK_GT < TK_GE ); Debug.Assert( TK_LT > TK_EQ && TK_LT < TK_GE ); Debug.Assert( TK_LE > TK_EQ && TK_LE < TK_GE ); Debug.Assert( TK_GE == TK_EQ + 4 ); return op == TK_IN || ( op >= TK_EQ && op <= TK_GE ) || op == TK_ISNULL; } /* ** Swap two objects of type TYPE. */ //#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} /* ** Commute a comparison operator. Expressions of the form "X op Y" ** are converted into "Y op X". ** ** If a collation sequence is Debug.Associated with either the left or right ** side of the comparison, it remains Debug.Associated with the same side after ** the commutation. So "Y collate NOCASE op X" becomes ** "X collate NOCASE op Y". This is because any collation sequence on ** the left hand side of a comparison overrides any collation sequence ** attached to the right. For the same reason the EP_ExpCollate flag ** is not commuted. */ static void exprCommute( Parse pParse, Expr pExpr ) { u16 expRight = (u16)( pExpr.pRight.flags & EP_ExpCollate ); u16 expLeft = (u16)( pExpr.pLeft.flags & EP_ExpCollate ); Debug.Assert( allowedOp( pExpr.op ) && pExpr.op != TK_IN ); pExpr.pRight.pColl = sqlite3ExprCollSeq( pParse, pExpr.pRight ); pExpr.pLeft.pColl = sqlite3ExprCollSeq( pParse, pExpr.pLeft ); SWAP( ref pExpr.pRight.pColl, ref pExpr.pLeft.pColl ); pExpr.pRight.flags = (u16)( ( pExpr.pRight.flags & ~EP_ExpCollate ) | expLeft ); pExpr.pLeft.flags = (u16)( ( pExpr.pLeft.flags & ~EP_ExpCollate ) | expRight ); SWAP( ref pExpr.pRight, ref pExpr.pLeft ); if ( pExpr.op >= TK_GT ) { Debug.Assert( TK_LT == TK_GT + 2 ); Debug.Assert( TK_GE == TK_LE + 2 ); Debug.Assert( TK_GT > TK_EQ ); Debug.Assert( TK_GT < TK_LE ); Debug.Assert( pExpr.op >= TK_GT && pExpr.op <= TK_GE ); pExpr.op = (u8)( ( ( pExpr.op - TK_GT ) ^ 2 ) + TK_GT ); } } /* ** Translate from TK_xx operator to WO_xx bitmask. */ static u16 operatorMask( int op ) { u16 c; Debug.Assert( allowedOp( op ) ); if ( op == TK_IN ) { c = WO_IN; } else if ( op == TK_ISNULL ) { c = WO_ISNULL; } else { Debug.Assert( ( WO_EQ << ( op - TK_EQ ) ) < 0x7fff ); c = (u16)( WO_EQ << ( op - TK_EQ ) ); } Debug.Assert( op != TK_ISNULL || c == WO_ISNULL ); Debug.Assert( op != TK_IN || c == WO_IN ); Debug.Assert( op != TK_EQ || c == WO_EQ ); Debug.Assert( op != TK_LT || c == WO_LT ); Debug.Assert( op != TK_LE || c == WO_LE ); Debug.Assert( op != TK_GT || c == WO_GT ); Debug.Assert( op != TK_GE || c == WO_GE ); return c; } /* ** Search for a term in the WHERE clause that is of the form "X " ** where X is a reference to the iColumn of table iCur and is one of ** the WO_xx operator codes specified by the op parameter. ** Return a pointer to the term. Return 0 if not found. */ static WhereTerm findTerm( WhereClause pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index pIdx /* Must be compatible with this index, if not NULL */ ) { WhereTerm pTerm; int k; Debug.Assert( iCur >= 0 ); op &= WO_ALL; for ( k = pWC.nTerm; k != 0; k-- )//, pTerm++) { pTerm = pWC.a[pWC.nTerm - k]; if ( pTerm.leftCursor == iCur && ( pTerm.prereqRight & notReady ) == 0 && pTerm.u.leftColumn == iColumn && ( pTerm.eOperator & op ) != 0 ) { if ( pIdx != null && pTerm.eOperator != WO_ISNULL ) { Expr pX = pTerm.pExpr; CollSeq pColl; char idxaff; int j; Parse pParse = pWC.pParse; idxaff = pIdx.pTable.aCol[iColumn].affinity; if ( !sqlite3IndexAffinityOk( pX, idxaff ) ) continue; /* Figure out the collation sequence required from an index for ** it to be useful for optimising expression pX. Store this ** value in variable pColl. */ Debug.Assert( pX.pLeft != null ); pColl = sqlite3BinaryCompareCollSeq( pParse, pX.pLeft, pX.pRight ); Debug.Assert( pColl != null || pParse.nErr != 0 ); for ( j = 0; pIdx.aiColumn[j] != iColumn; j++ ) { if ( NEVER( j >= pIdx.nColumn ) ) return null; } if ( pColl != null && !pColl.zName.Equals( pIdx.azColl[j], StringComparison.OrdinalIgnoreCase ) ) continue; } return pTerm; } } return null; } /* Forward reference */ //static void exprAnalyze(SrcList*, WhereClause*, int); /* ** Call exprAnalyze on all terms in a WHERE clause. ** ** */ static void exprAnalyzeAll( SrcList pTabList, /* the FROM clause */ WhereClause pWC /* the WHERE clause to be analyzed */ ) { int i; for ( i = pWC.nTerm - 1; i >= 0; i-- ) { exprAnalyze( pTabList, pWC, i ); } } #if !SQLITE_OMIT_LIKE_OPTIMIZATION /* ** Check to see if the given expression is a LIKE or GLOB operator that ** can be optimized using inequality constraints. Return TRUE if it is ** so and false if not. ** ** In order for the operator to be optimizible, the RHS must be a string ** literal that does not begin with a wildcard. */ static int isLikeOrGlob( Parse pParse, /* Parsing and code generating context */ Expr pExpr, /* Test this expression */ ref Expr ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ ref bool pisComplete, /* True if the only wildcard is % in the last character */ ref bool pnoCase /* True if uppercase is equivalent to lowercase */ ) { string z = null; /* String on RHS of LIKE operator */ Expr pRight, pLeft; /* Right and left size of LIKE operator */ ExprList pList; /* List of operands to the LIKE operator */ int c = 0; /* One character in z[] */ int cnt; /* Number of non-wildcard prefix characters */ char[] wc = new char[3]; /* Wildcard characters */ sqlite3 db = pParse.db; /* Data_base connection */ sqlite3_value pVal = null; int op; /* Opcode of pRight */ if ( !sqlite3IsLikeFunction( db, pExpr, ref pnoCase, wc ) ) { return 0; } //#if SQLITE_EBCDIC //if( pnoCase ) return 0; //#endif pList = pExpr.x.pList; pLeft = pList.a[1].pExpr; if ( pLeft.op != TK_COLUMN || sqlite3ExprAffinity( pLeft ) != SQLITE_AFF_TEXT ) { /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must ** be the name of an indexed column with TEXT affinity. */ return 0; } Debug.Assert( pLeft.iColumn != ( -1 ) ); /* Because IPK never has AFF_TEXT */ pRight = pList.a[0].pExpr; op = pRight.op; if ( op == TK_REGISTER ) { op = pRight.op2; } if ( op == TK_VARIABLE ) { Vdbe pReprepare = pParse.pReprepare; int iCol = pRight.iColumn; pVal = sqlite3VdbeGetValue( pReprepare, iCol, (byte)SQLITE_AFF_NONE ); if ( pVal != null && sqlite3_value_type( pVal ) == SQLITE_TEXT ) { z = sqlite3_value_text( pVal ); } sqlite3VdbeSetVarmask( pParse.pVdbe, iCol ); /* IMP: R-23257-02778 */ Debug.Assert( pRight.op == TK_VARIABLE || pRight.op == TK_REGISTER ); } else if ( op == TK_STRING ) { z = pRight.u.zToken; } if ( !string.IsNullOrEmpty( z ) ) { cnt = 0; while ( cnt < z.Length && ( c = z[cnt] ) != 0 && c != wc[0] && c != wc[1] && c != wc[2] ) { cnt++; } if ( cnt != 0 && 255 != (u8)z[cnt - 1] ) { Expr pPrefix; pisComplete = c == wc[0] && cnt == z.Length - 1; pPrefix = sqlite3Expr( db, TK_STRING, z ); if ( pPrefix != null ) pPrefix.u.zToken = pPrefix.u.zToken.Substring( 0, cnt ); ppPrefix = pPrefix; if ( op == TK_VARIABLE ) { Vdbe v = pParse.pVdbe; sqlite3VdbeSetVarmask( v, pRight.iColumn ); /* IMP: R-23257-02778 */ if ( pisComplete && pRight.u.zToken.Length > 1 ) { /* If the rhs of the LIKE expression is a variable, and the current ** value of the variable means there is no need to invoke the LIKE ** function, then no OP_Variable will be added to the program. ** This causes problems for the sqlite3_bind_parameter_name() ** API. To workaround them, add a dummy OP_Variable here. */ int r1 = sqlite3GetTempReg( pParse ); sqlite3ExprCodeTarget( pParse, pRight, r1 ); sqlite3VdbeChangeP3( v, sqlite3VdbeCurrentAddr( v ) - 1, 0 ); sqlite3ReleaseTempReg( pParse, r1 ); } } } else { z = null; } } sqlite3ValueFree( ref pVal ); return ( z != null ) ? 1 : 0; } #endif //* SQLITE_OMIT_LIKE_OPTIMIZATION */ #if !SQLITE_OMIT_VIRTUALTABLE /* ** Check to see if the given expression is of the form ** ** column MATCH expr ** ** If it is then return TRUE. If not, return FALSE. */ static int isMatchOfColumn( Expr pExpr /* Test this expression */ ){ ExprList pList; if( pExpr.op!=TK_FUNCTION ){ return 0; } if( !pExpr.u.zToken.Equals("match", StringComparison.OrdinalIgnoreCase ) ){ return 0; } pList = pExpr.x.pList; if( pList.nExpr!=2 ){ return 0; } if( pList.a[1].pExpr.op != TK_COLUMN ){ return 0; } return 1; } #endif //* SQLITE_OMIT_VIRTUALTABLE */ /* ** If the pBase expression originated in the ON or USING clause of ** a join, then transfer the appropriate markings over to derived. */ static void transferJoinMarkings( Expr pDerived, Expr pBase ) { pDerived.flags = (u16)( pDerived.flags | pBase.flags & EP_FromJoin ); pDerived.iRightJoinTable = pBase.iRightJoinTable; } #if !(SQLITE_OMIT_OR_OPTIMIZATION) && !(SQLITE_OMIT_SUBQUERY) /* ** Analyze a term that consists of two or more OR-connected ** subterms. So in: ** ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) ** ^^^^^^^^^^^^^^^^^^^^ ** ** This routine analyzes terms such as the middle term in the above example. ** A WhereOrTerm object is computed and attached to the term under ** analysis, regardless of the outcome of the analysis. Hence: ** ** WhereTerm.wtFlags |= TERM_ORINFO ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object ** ** The term being analyzed must have two or more of OR-connected subterms. ** A single subterm might be a set of AND-connected sub-subterms. ** Examples of terms under analysis: ** ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 ** (B) x=expr1 OR expr2=x OR x=expr3 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) ** ** CASE 1: ** ** If all subterms are of the form T.C=expr for some single column of C ** a single table T (as shown in example B above) then create a new virtual ** term that is an equivalent IN expression. In other words, if the term ** being analyzed is: ** ** x = expr1 OR expr2 = x OR x = expr3 ** ** then create a new virtual term like this: ** ** x IN (expr1,expr2,expr3) ** ** CASE 2: ** ** If all subterms are indexable by a single table T, then set ** ** WhereTerm.eOperator = WO_OR ** WhereTerm.u.pOrInfo.indexable |= the cursor number for table T ** ** A subterm is "indexable" if it is of the form ** "T.C " where C is any column of table T and ** is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". ** A subterm is also indexable if it is an AND of two or more ** subsubterms at least one of which is indexable. Indexable AND ** subterms have their eOperator set to WO_AND and they have ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. ** ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is something the bestIndex() routine will determine. This analysis ** only looks at whether subterms appropriate for indexing exist. ** ** All examples A through E above all satisfy case 2. But if a term ** also statisfies case 1 (such as B) we know that the optimizer will ** always prefer case 1, so in that case we pretend that case 2 is not ** satisfied. ** ** It might be the case that multiple tables are indexable. For example, ** (E) above is indexable on tables P, Q, and R. ** ** Terms that satisfy case 2 are candidates for lookup by using ** separate indices to find rowids for each subterm and composing ** the union of all rowids using a RowSet object. This is similar ** to "bitmap indices" in other data_base engines. ** ** OTHERWISE: ** ** If neither case 1 nor case 2 apply, then leave the eOperator set to ** zero. This term is not useful for search. */ static void exprAnalyzeOrTerm( SrcList pSrc, /* the FROM clause */ WhereClause pWC, /* the complete WHERE clause */ int idxTerm /* Index of the OR-term to be analyzed */ ) { Parse pParse = pWC.pParse; /* Parser context */ sqlite3 db = pParse.db; /* Data_base connection */ WhereTerm pTerm = pWC.a[idxTerm]; /* The term to be analyzed */ Expr pExpr = pTerm.pExpr; /* The expression of the term */ WhereMaskSet pMaskSet = pWC.pMaskSet; /* Table use masks */ int i; /* Loop counters */ WhereClause pOrWc; /* Breakup of pTerm into subterms */ WhereTerm pOrTerm; /* A Sub-term within the pOrWc */ WhereOrInfo pOrInfo; /* Additional information Debug.Associated with pTerm */ Bitmask chngToIN; /* Tables that might satisfy case 1 */ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ /* ** Break the OR clause into its separate subterms. The subterms are ** stored in a WhereClause structure containing within the WhereOrInfo ** object that is attached to the original OR clause term. */ Debug.Assert( ( pTerm.wtFlags & ( TERM_DYNAMIC | TERM_ORINFO | TERM_ANDINFO ) ) == 0 ); Debug.Assert( pExpr.op == TK_OR ); pTerm.u.pOrInfo = pOrInfo = new WhereOrInfo();//sqlite3DbMallocZero(db, sizeof(*pOrInfo)); if ( pOrInfo == null ) return; pTerm.wtFlags |= TERM_ORINFO; pOrWc = pOrInfo.wc; whereClauseInit( pOrWc, pWC.pParse, pMaskSet ); whereSplit( pOrWc, pExpr, TK_OR ); exprAnalyzeAll( pSrc, pOrWc ); // if ( db.mallocFailed != 0 ) return; Debug.Assert( pOrWc.nTerm >= 2 ); /* ** Compute the set of tables that might satisfy cases 1 or 2. */ indexable = ~(Bitmask)0; chngToIN = ~( pWC.vmask ); for ( i = pOrWc.nTerm - 1; i >= 0 && indexable != 0; i-- )//, pOrTerm++ ) { pOrTerm = pOrWc.a[i]; if ( ( pOrTerm.eOperator & WO_SINGLE ) == 0 ) { WhereAndInfo pAndInfo; Debug.Assert( pOrTerm.eOperator == 0 ); Debug.Assert( ( pOrTerm.wtFlags & ( TERM_ANDINFO | TERM_ORINFO ) ) == 0 ); chngToIN = 0; pAndInfo = new WhereAndInfo();//sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); if ( pAndInfo != null ) { WhereClause pAndWC; WhereTerm pAndTerm; int j; Bitmask b = 0; pOrTerm.u.pAndInfo = pAndInfo; pOrTerm.wtFlags |= TERM_ANDINFO; pOrTerm.eOperator = WO_AND; pAndWC = pAndInfo.wc; whereClauseInit( pAndWC, pWC.pParse, pMaskSet ); whereSplit( pAndWC, pOrTerm.pExpr, TK_AND ); exprAnalyzeAll( pSrc, pAndWC ); //testcase( db.mallocFailed ); ////if ( 0 == db.mallocFailed ) { for ( j = 0; j < pAndWC.nTerm; j++ )//, pAndTerm++ ) { pAndTerm = pAndWC.a[j]; Debug.Assert( pAndTerm.pExpr != null ); if ( allowedOp( pAndTerm.pExpr.op ) ) { b |= getMask( pMaskSet, pAndTerm.leftCursor ); } } } indexable &= b; } } else if ( ( pOrTerm.wtFlags & TERM_COPIED ) != 0 ) { /* Skip this term for now. We revisit it when we process the ** corresponding TERM_VIRTUAL term */ } else { Bitmask b; b = getMask( pMaskSet, pOrTerm.leftCursor ); if ( ( pOrTerm.wtFlags & TERM_VIRTUAL ) != 0 ) { WhereTerm pOther = pOrWc.a[pOrTerm.iParent]; b |= getMask( pMaskSet, pOther.leftCursor ); } indexable &= b; if ( pOrTerm.eOperator != WO_EQ ) { chngToIN = 0; } else { chngToIN &= b; } } } /* ** Record the set of tables that satisfy case 2. The set might be ** empty. */ pOrInfo.indexable = indexable; pTerm.eOperator = (u16)( indexable == 0 ? 0 : WO_OR ); /* ** chngToIN holds a set of tables that *might* satisfy case 1. But ** we have to do some additional checking to see if case 1 really ** is satisfied. ** ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means ** that there is no possibility of transforming the OR clause into an ** IN operator because one or more terms in the OR clause contain ** something other than == on a column in the single table. The 1-bit ** case means that every term of the OR clause is of the form ** "table.column=expr" for some single table. The one bit that is set ** will correspond to the common table. We still need to check to make ** sure the same column is used on all terms. The 2-bit case is when ** the all terms are of the form "table1.column=table2.column". It ** might be possible to form an IN operator with either table1.column ** or table2.column as the LHS if either is common to every term of ** the OR clause. ** ** Note that terms of the form "table.column1=table.column2" (the ** same table on both sizes of the ==) cannot be optimized. */ if ( chngToIN != 0 ) { int okToChngToIN = 0; /* True if the conversion to IN is valid */ int iColumn = -1; /* Column index on lhs of IN operator */ int iCursor = -1; /* Table cursor common to all terms */ int j = 0; /* Loop counter */ /* Search for a table and column that appears on one side or the ** other of the == operator in every subterm. That table and column ** will be recorded in iCursor and iColumn. There might not be any ** such table and column. Set okToChngToIN if an appropriate table ** and column is found but leave okToChngToIN false if not found. */ for ( j = 0; j < 2 && 0 == okToChngToIN; j++ ) { //pOrTerm = pOrWc.a; for ( i = pOrWc.nTerm - 1; i >= 0; i-- )//, pOrTerm++) { pOrTerm = pOrWc.a[pOrWc.nTerm - 1 - i]; Debug.Assert( pOrTerm.eOperator == WO_EQ ); pOrTerm.wtFlags = (u8)( pOrTerm.wtFlags & ~TERM_OR_OK ); if ( pOrTerm.leftCursor == iCursor ) { /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ Debug.Assert( j == 1 ); continue; } if ( ( chngToIN & getMask( pMaskSet, pOrTerm.leftCursor ) ) == 0 ) { /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceeded ** or follwed by an inverted copy (t2.b==t1.a). Skip this term ** and use its inversion. */ testcase( pOrTerm.wtFlags & TERM_COPIED ); testcase( pOrTerm.wtFlags & TERM_VIRTUAL ); Debug.Assert( ( pOrTerm.wtFlags & ( TERM_COPIED | TERM_VIRTUAL ) ) != 0 ); continue; } iColumn = pOrTerm.u.leftColumn; iCursor = pOrTerm.leftCursor; break; } if ( i < 0 ) { /* No candidate table+column was found. This can only occur ** on the second iteration */ Debug.Assert( j == 1 ); Debug.Assert( ( chngToIN & ( chngToIN - 1 ) ) == 0 ); Debug.Assert( chngToIN == getMask( pMaskSet, iCursor ) ); break; } testcase( j == 1 ); /* We have found a candidate table and column. Check to see if that ** table and column is common to every term in the OR clause */ okToChngToIN = 1; for ( ; i >= 0 && okToChngToIN != 0; i-- )//, pOrTerm++) { pOrTerm = pOrWc.a[pOrWc.nTerm - 1 - i]; Debug.Assert( pOrTerm.eOperator == WO_EQ ); if ( pOrTerm.leftCursor != iCursor ) { pOrTerm.wtFlags = (u8)( pOrTerm.wtFlags & ~TERM_OR_OK ); } else if ( pOrTerm.u.leftColumn != iColumn ) { okToChngToIN = 0; } else { int affLeft, affRight; /* If the right-hand side is also a column, then the affinities ** of both right and left sides must be such that no type ** conversions are required on the right. (Ticket #2249) */ affRight = sqlite3ExprAffinity( pOrTerm.pExpr.pRight ); affLeft = sqlite3ExprAffinity( pOrTerm.pExpr.pLeft ); if ( affRight != 0 && affRight != affLeft ) { okToChngToIN = 0; } else { pOrTerm.wtFlags |= TERM_OR_OK; } } } } /* At this point, okToChngToIN is true if original pTerm satisfies ** case 1. In that case, construct a new virtual term that is ** pTerm converted into an IN operator. ** ** EV: R-00211-15100 */ if ( okToChngToIN != 0 ) { Expr pDup; /* A transient duplicate expression */ ExprList pList = null; /* The RHS of the IN operator */ Expr pLeft = null; /* The LHS of the IN operator */ Expr pNew; /* The complete IN operator */ for ( i = pOrWc.nTerm - 1; i >= 0; i-- )//, pOrTerm++) { pOrTerm = pOrWc.a[pOrWc.nTerm - 1 - i]; if ( ( pOrTerm.wtFlags & TERM_OR_OK ) == 0 ) continue; Debug.Assert( pOrTerm.eOperator == WO_EQ ); Debug.Assert( pOrTerm.leftCursor == iCursor ); Debug.Assert( pOrTerm.u.leftColumn == iColumn ); pDup = sqlite3ExprDup( db, pOrTerm.pExpr.pRight, 0 ); pList = sqlite3ExprListAppend( pWC.pParse, pList, pDup ); pLeft = pOrTerm.pExpr.pLeft; } Debug.Assert( pLeft != null ); pDup = sqlite3ExprDup( db, pLeft, 0 ); pNew = sqlite3PExpr( pParse, TK_IN, pDup, null, null ); if ( pNew != null ) { int idxNew; transferJoinMarkings( pNew, pExpr ); Debug.Assert( !ExprHasProperty( pNew, EP_xIsSelect ) ); pNew.x.pList = pList; idxNew = whereClauseInsert( pWC, pNew, TERM_VIRTUAL | TERM_DYNAMIC ); testcase( idxNew == 0 ); exprAnalyze( pSrc, pWC, idxNew ); pTerm = pWC.a[idxTerm]; pWC.a[idxNew].iParent = idxTerm; pTerm.nChild = 1; } else { sqlite3ExprListDelete( db, ref pList ); } pTerm.eOperator = WO_NOOP; /* case 1 trumps case 2 */ } } } #endif //* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ /* ** The input to this routine is an WhereTerm structure with only the ** "pExpr" field filled in. The job of this routine is to analyze the ** subexpression and populate all the other fields of the WhereTerm ** structure. ** ** If the expression is of the form " X" it gets commuted ** to the standard form of "X ". ** ** If the expression is of the form "X Y" where both X and Y are ** columns, then the original expression is unchanged and a new virtual ** term of the form "Y X" is added to the WHERE clause and ** analyzed separately. The original term is marked with TERM_COPIED ** and the new term is marked with TERM_DYNAMIC (because it's pExpr ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it ** is a commuted copy of a prior term.) The original term has nChild=1 ** and the copy has idxParent set to the index of the original term. */ static void exprAnalyze( SrcList pSrc, /* the FROM clause */ WhereClause pWC, /* the WHERE clause */ int idxTerm /* Index of the term to be analyzed */ ) { WhereTerm pTerm; /* The term to be analyzed */ WhereMaskSet pMaskSet; /* Set of table index masks */ Expr pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequesites of the pExpr.pLeft */ Bitmask prereqAll; /* Prerequesites of pExpr */ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ Expr pStr1 = null; /* RHS of LIKE/GLOB operator */ bool isComplete = false; /* RHS of LIKE/GLOB ends with wildcard */ bool noCase = false; /* LIKE/GLOB distinguishes case */ int op; /* Top-level operator. pExpr.op */ Parse pParse = pWC.pParse; /* Parsing context */ sqlite3 db = pParse.db; /* Data_base connection */ //if ( db.mallocFailed != 0 ) //{ // return; //} pTerm = pWC.a[idxTerm]; pMaskSet = pWC.pMaskSet; pExpr = pTerm.pExpr; prereqLeft = exprTableUsage( pMaskSet, pExpr.pLeft ); op = pExpr.op; if ( op == TK_IN ) { Debug.Assert( pExpr.pRight == null ); if ( ExprHasProperty( pExpr, EP_xIsSelect ) ) { pTerm.prereqRight = exprSelectTableUsage( pMaskSet, pExpr.x.pSelect ); } else { pTerm.prereqRight = exprListTableUsage( pMaskSet, pExpr.x.pList ); } } else if ( op == TK_ISNULL ) { pTerm.prereqRight = 0; } else { pTerm.prereqRight = exprTableUsage( pMaskSet, pExpr.pRight ); } prereqAll = exprTableUsage( pMaskSet, pExpr ); if ( ExprHasProperty( pExpr, EP_FromJoin ) ) { Bitmask x = getMask( pMaskSet, pExpr.iRightJoinTable ); prereqAll |= x; extraRight = x - 1; /* ON clause terms may not be used with an index ** on left table of a LEFT JOIN. Ticket #3015 */ } pTerm.prereqAll = prereqAll; pTerm.leftCursor = -1; pTerm.iParent = -1; pTerm.eOperator = 0; if ( allowedOp( op ) && ( pTerm.prereqRight & prereqLeft ) == 0 ) { Expr pLeft = pExpr.pLeft; Expr pRight = pExpr.pRight; if ( pLeft.op == TK_COLUMN ) { pTerm.leftCursor = pLeft.iTable; pTerm.u.leftColumn = pLeft.iColumn; pTerm.eOperator = operatorMask( op ); } if ( pRight != null && pRight.op == TK_COLUMN ) { WhereTerm pNew; Expr pDup; if ( pTerm.leftCursor >= 0 ) { int idxNew; pDup = sqlite3ExprDup( db, pExpr, 0 ); //if ( db.mallocFailed != 0 ) //{ // sqlite3ExprDelete( db, ref pDup ); // return; //} idxNew = whereClauseInsert( pWC, pDup, TERM_VIRTUAL | TERM_DYNAMIC ); if ( idxNew == 0 ) return; pNew = pWC.a[idxNew]; pNew.iParent = idxTerm; pTerm = pWC.a[idxTerm]; pTerm.nChild = 1; pTerm.wtFlags |= TERM_COPIED; } else { pDup = pExpr; pNew = pTerm; } exprCommute( pParse, pDup ); pLeft = pDup.pLeft; pNew.leftCursor = pLeft.iTable; pNew.u.leftColumn = pLeft.iColumn; testcase( ( prereqLeft | extraRight ) != prereqLeft ); pNew.prereqRight = prereqLeft | extraRight; pNew.prereqAll = prereqAll; pNew.eOperator = operatorMask( pDup.op ); } } #if !SQLITE_OMIT_BETWEEN_OPTIMIZATION /* If a term is the BETWEEN operator, create two new virtual terms ** that define the range that the BETWEEN implements. For example: ** ** a BETWEEN b AND c ** ** is converted into: ** ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) ** ** The two new terms are added onto the end of the WhereClause object. ** The new terms are "dynamic" and are children of the original BETWEEN ** term. That means that if the BETWEEN term is coded, the children are ** skipped. Or, if the children are satisfied by an index, the original ** BETWEEN term is skipped. */ else if ( pExpr.op == TK_BETWEEN && pWC.op == TK_AND ) { ExprList pList = pExpr.x.pList; int i; u8[] ops = new u8[] { TK_GE, TK_LE }; Debug.Assert( pList != null ); Debug.Assert( pList.nExpr == 2 ); for ( i = 0; i < 2; i++ ) { Expr pNewExpr; int idxNew; pNewExpr = sqlite3PExpr( pParse, ops[i], sqlite3ExprDup( db, pExpr.pLeft, 0 ), sqlite3ExprDup( db, pList.a[i].pExpr, 0 ), null ); idxNew = whereClauseInsert( pWC, pNewExpr, TERM_VIRTUAL | TERM_DYNAMIC ); testcase( idxNew == 0 ); exprAnalyze( pSrc, pWC, idxNew ); pTerm = pWC.a[idxTerm]; pWC.a[idxNew].iParent = idxTerm; } pTerm.nChild = 2; } #endif //* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ #if !(SQLITE_OMIT_OR_OPTIMIZATION) && !(SQLITE_OMIT_SUBQUERY) /* Analyze a term that is composed of two or more subterms connected by ** an OR operator. */ else if ( pExpr.op == TK_OR ) { Debug.Assert( pWC.op == TK_AND ); exprAnalyzeOrTerm( pSrc, pWC, idxTerm ); pTerm = pWC.a[idxTerm]; } #endif //* SQLITE_OMIT_OR_OPTIMIZATION */ #if !SQLITE_OMIT_LIKE_OPTIMIZATION /* Add constraints to reduce the search space on a LIKE or GLOB ** operator. ** ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints ** ** x>='abc' AND x<'abd' AND x LIKE 'abc%' ** ** The last character of the prefix "abc" is incremented to form the ** termination condition "abd". */ if ( pWC.op == TK_AND && isLikeOrGlob( pParse, pExpr, ref pStr1, ref isComplete, ref noCase ) != 0 ) { Expr pLeft; /* LHS of LIKE/GLOB operator */ Expr pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ Expr pNewExpr1; Expr pNewExpr2; int idxNew1; int idxNew2; CollSeq pColl; /* Collating sequence to use */ pLeft = pExpr.x.pList.a[1].pExpr; pStr2 = sqlite3ExprDup( db, pStr1, 0 ); ////if ( 0 == db.mallocFailed ) { int c, pC; /* Last character before the first wildcard */ pC = pStr2.u.zToken[sqlite3Strlen30( pStr2.u.zToken ) - 1]; c = pC; if ( noCase ) { /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ if ( c == 'A' - 1 ) isComplete = false; /* EV: R-64339-08207 */ c = sqlite3UpperToLower[c]; } pStr2.u.zToken = pStr2.u.zToken.Substring( 0, sqlite3Strlen30( pStr2.u.zToken ) - 1 ) + (char)( c + 1 );// pC = c + 1; } pColl = sqlite3FindCollSeq( db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY", 0 ); pNewExpr1 = sqlite3PExpr( pParse, TK_GE, sqlite3ExprSetColl( sqlite3ExprDup( db, pLeft, 0 ), pColl ), pStr1, 0 ); idxNew1 = whereClauseInsert( pWC, pNewExpr1, TERM_VIRTUAL | TERM_DYNAMIC ); testcase( idxNew1 == 0 ); exprAnalyze( pSrc, pWC, idxNew1 ); pNewExpr2 = sqlite3PExpr( pParse, TK_LT, sqlite3ExprSetColl( sqlite3ExprDup( db, pLeft, 0 ), pColl ), pStr2, null ); idxNew2 = whereClauseInsert( pWC, pNewExpr2, TERM_VIRTUAL | TERM_DYNAMIC ); testcase( idxNew2 == 0 ); exprAnalyze( pSrc, pWC, idxNew2 ); pTerm = pWC.a[idxTerm]; if ( isComplete ) { pWC.a[idxNew1].iParent = idxTerm; pWC.a[idxNew2].iParent = idxTerm; pTerm.nChild = 2; } } #endif //* SQLITE_OMIT_LIKE_OPTIMIZATION */ #if !SQLITE_OMIT_VIRTUALTABLE /* Add a WO_MATCH auxiliary term to the constraint set if the ** current expression is of the form: column MATCH expr. ** This information is used by the xBestIndex methods of ** virtual tables. The native query optimizer does not attempt ** to do anything with MATCH functions. */ if ( isMatchOfColumn( pExpr ) != 0 ) { int idxNew; Expr pRight, pLeft; WhereTerm pNewTerm; Bitmask prereqColumn, prereqExpr; pRight = pExpr.x.pList.a[0].pExpr; pLeft = pExpr.x.pList.a[1].pExpr; prereqExpr = exprTableUsage( pMaskSet, pRight ); prereqColumn = exprTableUsage( pMaskSet, pLeft ); if ( ( prereqExpr & prereqColumn ) == 0 ) { Expr pNewExpr; pNewExpr = sqlite3PExpr( pParse, TK_MATCH, null, sqlite3ExprDup( db, pRight, 0 ), null ); idxNew = whereClauseInsert( pWC, pNewExpr, TERM_VIRTUAL | TERM_DYNAMIC ); testcase( idxNew == 0 ); pNewTerm = pWC.a[idxNew]; pNewTerm.prereqRight = prereqExpr; pNewTerm.leftCursor = pLeft.iTable; pNewTerm.u.leftColumn = pLeft.iColumn; pNewTerm.eOperator = WO_MATCH; pNewTerm.iParent = idxTerm; pTerm = pWC.a[idxTerm]; pTerm.nChild = 1; pTerm.wtFlags |= TERM_COPIED; pNewTerm.prereqAll = pTerm.prereqAll; } } #endif //* SQLITE_OMIT_VIRTUALTABLE */ #if SQLITE_ENABLE_STAT2 /* When sqlite_stat2 histogram data is available an operator of the ** form "x IS NOT NULL" can sometimes be evaluated more efficiently ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a ** virtual term of that form. ** ** Note that the virtual term must be tagged with TERM_VNULL. This ** TERM_VNULL tag will suppress the not-null check at the beginning ** of the loop. Without the TERM_VNULL flag, the not-null check at ** the start of the loop will prevent any results from being returned. */ if ( pExpr.op == TK_NOTNULL && pExpr.pLeft.op == TK_COLUMN && pExpr.pLeft.iColumn >= 0 ) { Expr pNewExpr; Expr pLeft = pExpr.pLeft; int idxNew; WhereTerm pNewTerm; pNewExpr = sqlite3PExpr( pParse, TK_GT, sqlite3ExprDup( db, pLeft, 0 ), sqlite3PExpr( pParse, TK_NULL, 0, 0, 0 ), 0 ); idxNew = whereClauseInsert( pWC, pNewExpr, TERM_VIRTUAL | TERM_DYNAMIC | TERM_VNULL ); if ( idxNew != 0 ) { pNewTerm = pWC.a[idxNew]; pNewTerm.prereqRight = 0; pNewTerm.leftCursor = pLeft.iTable; pNewTerm.u.leftColumn = pLeft.iColumn; pNewTerm.eOperator = WO_GT; pNewTerm.iParent = idxTerm; pTerm = pWC.a[idxTerm]; pTerm.nChild = 1; pTerm.wtFlags |= TERM_COPIED; pNewTerm.prereqAll = pTerm.prereqAll; } } #endif //* SQLITE_ENABLE_STAT2 */ /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm.prereqRight |= extraRight; } /* ** Return TRUE if any of the expressions in pList.a[iFirst...] contain ** a reference to any table other than the iBase table. */ static bool referencesOtherTables( ExprList pList, /* Search expressions in ths list */ WhereMaskSet pMaskSet, /* Mapping from tables to bitmaps */ int iFirst, /* Be searching with the iFirst-th expression */ int iBase /* Ignore references to this table */ ) { Bitmask allowed = ~getMask( pMaskSet, iBase ); while ( iFirst < pList.nExpr ) { if ( ( exprTableUsage( pMaskSet, pList.a[iFirst++].pExpr ) & allowed ) != 0 ) { return true; } } return false; } /* ** This routine decides if pIdx can be used to satisfy the ORDER BY ** clause. If it can, it returns 1. If pIdx cannot satisfy the ** ORDER BY clause, this routine returns 0. ** ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the ** left-most table in the FROM clause of that same SELECT statement and ** the table has a cursor number of "_base". pIdx is an index on pTab. ** ** nEqCol is the number of columns of pIdx that are used as equality ** constraints. Any of these columns may be missing from the ORDER BY ** clause and the match can still be a success. ** ** All terms of the ORDER BY that match against the index must be either ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE ** index do not need to satisfy this constraint.) The pbRev value is ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if ** the ORDER BY clause is all ASC. */ static bool isSortingIndex( Parse pParse, /* Parsing context */ WhereMaskSet pMaskSet, /* Mapping from table cursor numbers to bitmaps */ Index pIdx, /* The index we are testing */ int _base, /* Cursor number for the table to be sorted */ ExprList pOrderBy, /* The ORDER BY clause */ int nEqCol, /* Number of index columns with == constraints */ int wsFlags, /* Index usages flags */ ref int pbRev /* Set to 1 if ORDER BY is DESC */ ) { int i, j; /* Loop counters */ int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ int nTerm; /* Number of ORDER BY terms */ ExprList_item pTerm; /* A term of the ORDER BY clause */ sqlite3 db = pParse.db; Debug.Assert( pOrderBy != null ); nTerm = pOrderBy.nExpr; Debug.Assert( nTerm > 0 ); /* Argument pIdx must either point to a 'real' named index structure, ** or an index structure allocated on the stack by bestBtreeIndex() to ** represent the rowid index that is part of every table. */ Debug.Assert( !string.IsNullOrEmpty( pIdx.zName ) || ( pIdx.nColumn == 1 && pIdx.aiColumn[0] == -1 ) ); /* Match terms of the ORDER BY clause against columns of ** the index. ** ** Note that indices have pIdx.nColumn regular columns plus ** one additional column containing the rowid. The rowid column ** of the index is also allowed to match against the ORDER BY ** clause. */ for ( i = j = 0; j < nTerm && i <= pIdx.nColumn; i++ ) { pTerm = pOrderBy.a[j]; Expr pExpr; /* The expression of the ORDER BY pTerm */ CollSeq pColl; /* The collating sequence of pExpr */ int termSortOrder; /* Sort order for this term */ int iColumn; /* The i-th column of the index. -1 for rowid */ int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ string zColl; /* Name of the collating sequence for i-th index term */ pExpr = pTerm.pExpr; if ( pExpr.op != TK_COLUMN || pExpr.iTable != _base ) { /* Can not use an index sort on anything that is not a column in the ** left-most table of the FROM clause */ break; } pColl = sqlite3ExprCollSeq( pParse, pExpr ); if ( null == pColl ) { pColl = db.pDfltColl; } if ( !string.IsNullOrEmpty( pIdx.zName ) && i < pIdx.nColumn ) { iColumn = pIdx.aiColumn[i]; if ( iColumn == pIdx.pTable.iPKey ) { iColumn = -1; } iSortOrder = pIdx.aSortOrder[i]; zColl = pIdx.azColl[i]; } else { iColumn = -1; iSortOrder = 0; zColl = pColl.zName; } if ( pExpr.iColumn != iColumn || !pColl.zName.Equals( zColl, StringComparison.OrdinalIgnoreCase ) ) { /* Term j of the ORDER BY clause does not match column i of the index */ if ( i < nEqCol ) { /* If an index column that is constrained by == fails to match an ** ORDER BY term, that is OK. Just ignore that column of the index */ continue; } else if ( i == pIdx.nColumn ) { /* Index column i is the rowid. All other terms match. */ break; } else { /* If an index column fails to match and is not constrained by == ** then the index cannot satisfy the ORDER BY constraint. */ return false; } } Debug.Assert( pIdx.aSortOrder != null || iColumn == -1 ); Debug.Assert( pTerm.sortOrder == 0 || pTerm.sortOrder == 1 ); Debug.Assert( iSortOrder == 0 || iSortOrder == 1 ); termSortOrder = iSortOrder ^ pTerm.sortOrder; if ( i > nEqCol ) { if ( termSortOrder != sortOrder ) { /* Indices can only be used if all ORDER BY terms past the ** equality constraints are all either DESC or ASC. */ return false; } } else { sortOrder = termSortOrder; } j++; //pTerm++; if ( iColumn < 0 && !referencesOtherTables( pOrderBy, pMaskSet, j, _base ) ) { /* If the indexed column is the primary key and everything matches ** so far and none of the ORDER BY terms to the right reference other ** tables in the join, then we are Debug.Assured that the index can be used ** to sort because the primary key is unique and so none of the other ** columns will make any difference */ j = nTerm; } } pbRev = sortOrder != 0 ? 1 : 0; if ( j >= nTerm ) { /* All terms of the ORDER BY clause are covered by this index so ** this index can be used for sorting. */ return true; } if ( pIdx.onError != OE_None && i == pIdx.nColumn && ( wsFlags & WHERE_COLUMN_NULL ) == 0 && !referencesOtherTables( pOrderBy, pMaskSet, j, _base ) ) { /* All terms of this index match some prefix of the ORDER BY clause ** and the index is UNIQUE and no terms on the tail of the ORDER BY ** clause reference other tables in a join. If this is all true then ** the order by clause is superfluous. Not that if the matching ** condition is IS NULL then the result is not necessarily unique ** even on a UNIQUE index, so disallow those cases. */ return true; } return false; } /* ** Prepare a crude estimate of the logarithm of the input value. ** The results need not be exact. This is only used for estimating ** the total cost of performing operations with O(logN) or O(NlogN) ** complexity. Because N is just a guess, it is no great tragedy if ** logN is a little off. */ static double estLog( double N ) { double logN = 1; double x = 10; while ( N > x ) { logN += 1; x *= 10; } return logN; } /* ** Two routines for printing the content of an sqlite3_index_info ** structure. Used for testing and debugging only. If neither ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines ** are no-ops. */ #if !(SQLITE_OMIT_VIRTUALTABLE) && (SQLITE_DEBUG) static void TRACE_IDX_INPUTS( sqlite3_index_info p ) { int i; if ( !sqlite3WhereTrace ) return; for ( i = 0 ; i < p.nConstraint ; i++ ) { sqlite3DebugPrintf( " constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", i, p.aConstraint[i].iColumn, p.aConstraint[i].iTermOffset, p.aConstraint[i].op, p.aConstraint[i].usable ); } for ( i = 0 ; i < p.nOrderBy ; i++ ) { sqlite3DebugPrintf( " orderby[%d]: col=%d desc=%d\n", i, p.aOrderBy[i].iColumn, p.aOrderBy[i].desc ); } } static void TRACE_IDX_OUTPUTS( sqlite3_index_info p ) { int i; if ( !sqlite3WhereTrace ) return; for ( i = 0 ; i < p.nConstraint ; i++ ) { sqlite3DebugPrintf( " usage[%d]: argvIdx=%d omit=%d\n", i, p.aConstraintUsage[i].argvIndex, p.aConstraintUsage[i].omit ); } sqlite3DebugPrintf( " idxNum=%d\n", p.idxNum ); sqlite3DebugPrintf( " idxStr=%s\n", p.idxStr ); sqlite3DebugPrintf( " orderByConsumed=%d\n", p.orderByConsumed ); sqlite3DebugPrintf( " estimatedCost=%g\n", p.estimatedCost ); } #else //#define TRACE_IDX_INPUTS(A) static void TRACE_IDX_INPUTS( sqlite3_index_info p ) { } //#define TRACE_IDX_OUTPUTS(A) static void TRACE_IDX_OUTPUTS( sqlite3_index_info p ) { } #endif /* ** Required because bestIndex() is called by bestOrClauseIndex() */ //static void bestIndex( //Parse*, WhereClause*, struct SrcList_item*, //Bitmask, ExprList*, WhereCost); /* ** This routine attempts to find an scanning strategy that can be used ** to optimize an 'OR' expression that is part of a WHERE clause. ** ** The table associated with FROM clause term pSrc may be either a ** regular B-Tree table or a virtual table. */ static void bestOrClauseIndex( Parse pParse, /* The parsing context */ WhereClause pWC, /* The WHERE clause */ SrcList_item pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors not available for indexing */ Bitmask notValid, /* Cursors not available for any purpose */ ExprList pOrderBy, /* The ORDER BY clause */ WhereCost pCost /* Lowest cost query plan */ ) { #if !SQLITE_OMIT_OR_OPTIMIZATION int iCur = pSrc.iCursor; /* The cursor of the table to be accessed */ Bitmask maskSrc = getMask( pWC.pMaskSet, iCur ); /* Bitmask for pSrc */ ////WhereTerm pWCEnd = pWC.a[pWC.nTerm]; /* End of pWC.a[] */ WhereTerm pTerm; /* A single term of the WHERE clause */ /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses ** are used */ if ( pSrc.notIndexed != 0 || pSrc.pIndex != null ) { return; } /* Search the WHERE clause terms for a usable WO_OR term. */ for ( int _pt = 0; _pt < pWC.nTerm; _pt++ )//= pCost.rCost ) break; } /* If there is an ORDER BY clause, increase the scan cost to account ** for the cost of the sort. */ if ( pOrderBy != null ) { #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "... sorting increases OR cost %.9g to %.9g\n", rTotal, rTotal + nRow * estLog( nRow ) ); #endif rTotal += nRow * estLog( nRow ); } /* If the cost of scanning using this OR term for optimization is ** less than the current cost stored in pCost, replace the contents ** of pCost. */ #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow ); #endif if ( rTotal < pCost.rCost ) { pCost.rCost = rTotal; pCost.used = used; pCost.plan.nRow = nRow; pCost.plan.wsFlags = (uint)flags; pCost.plan.u.pTerm = pTerm; } } } #endif //* SQLITE_OMIT_OR_OPTIMIZATION */ } #if !SQLITE_OMIT_AUTOMATIC_INDEX /* ** Return TRUE if the WHERE clause term pTerm is of a form where it ** could be used with an index to access pSrc, assuming an appropriate ** index existed. */ static int termCanDriveIndex( WhereTerm pTerm, /* WHERE clause term to check */ SrcList_item pSrc, /* Table we are trying to access */ Bitmask notReady /* Tables in outer loops of the join */ ) { char aff; if ( pTerm.leftCursor != pSrc.iCursor ) return 0; if ( pTerm.eOperator != WO_EQ ) return 0; if ( ( pTerm.prereqRight & notReady ) != 0 ) return 0; aff = pSrc.pTab.aCol[pTerm.u.leftColumn].affinity; if ( !sqlite3IndexAffinityOk( pTerm.pExpr, aff ) ) return 0; return 1; } #endif #if !SQLITE_OMIT_AUTOMATIC_INDEX /* ** If the query plan for pSrc specified in pCost is a full table scan ** and indexing is allows (if there is no NOT INDEXED clause) and it ** possible to construct a transient index that would perform better ** than a full table scan even when the cost of constructing the index ** is taken into account, then alter the query plan to use the ** transient index. */ static void bestAutomaticIndex( Parse pParse, /* The parsing context */ WhereClause pWC, /* The WHERE clause */ SrcList_item pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors that are not available */ WhereCost pCost /* Lowest cost query plan */ ) { double nTableRow; /* Rows in the input table */ double logN; /* log(nTableRow) */ double costTempIdx; /* per-query cost of the transient index */ WhereTerm pTerm; /* A single term of the WHERE clause */ WhereTerm pWCEnd; /* End of pWC.a[] */ Table pTable; /* Table that might be indexed */ if ( pParse.nQueryLoop <= (double)1 ) { /* There is no point in building an automatic index for a single scan */ return; } if ( ( pParse.db.flags & SQLITE_AutoIndex ) == 0 ) { /* Automatic indices are disabled at run-time */ return; } if ( ( pCost.plan.wsFlags & WHERE_NOT_FULLSCAN ) != 0 ) { /* We already have some kind of index in use for this query. */ return; } if ( pSrc.notIndexed != 0 ) { /* The NOT INDEXED clause appears in the SQL. */ return; } Debug.Assert( pParse.nQueryLoop >= (double)1 ); pTable = pSrc.pTab; nTableRow = pTable.nRowEst; logN = estLog( nTableRow ); costTempIdx = 2 * logN * ( nTableRow / pParse.nQueryLoop + 1 ); if ( costTempIdx >= pCost.rCost ) { /* The cost of creating the transient table would be greater than ** doing the full table scan */ return; } /* Search for any equality comparison term */ //pWCEnd = pWC.a[pWC.nTerm]; for ( int ipTerm = 0; ipTerm < pWC.nTerm; ipTerm++ )//; pTerm= BMS ? ( (Bitmask)1 ) << ( BMS - 1 ) : ( (Bitmask)1 ) << iCol; testcase( iCol == BMS ); testcase( iCol == BMS - 1 ); if ( ( idxCols & cMask ) == 0 ) { nColumn++; idxCols |= cMask; } } } Debug.Assert( nColumn > 0 ); pLevel.plan.nEq = (u32)nColumn; /* Count the number of additional columns needed to create a ** covering index. A "covering index" is an index that contains all ** columns that are needed by the query. With a covering index, the ** original table never needs to be accessed. Automatic indices must ** be a covering index because the index will not be updated if the ** original table changes and the index and table cannot both be used ** if they go out of sync. */ extraCols = pSrc.colUsed & ( ~idxCols | ( ( (Bitmask)1 ) << ( BMS - 1 ) ) ); mxBitCol = ( pTable.nCol >= BMS - 1 ) ? BMS - 1 : pTable.nCol; testcase( pTable.nCol == BMS - 1 ); testcase( pTable.nCol == BMS - 2 ); for ( i = 0; i < mxBitCol; i++ ) { if ( ( extraCols & ( ( (Bitmask)1 ) << i ) ) != 0 ) nColumn++; } if ( ( pSrc.colUsed & ( ( (Bitmask)1 ) << ( BMS - 1 ) ) ) != 0 ) { nColumn += pTable.nCol - BMS + 1; } pLevel.plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ; /* Construct the Index object to describe this index */ //nByte = sizeof(Index); //nByte += nColumn*sizeof(int); /* Index.aiColumn */ //nByte += nColumn*sizeof(char); /* Index.azColl */ //nByte += nColumn; /* Index.aSortOrder */ //pIdx = sqlite3DbMallocZero(pParse.db, nByte); //if( pIdx==null) return; pIdx = new Index(); pLevel.plan.u.pIdx = pIdx; pIdx.azColl = new string[nColumn + 1];// pIdx[1]; pIdx.aiColumn = new int[nColumn + 1];// pIdx.azColl[nColumn]; pIdx.aSortOrder = new u8[nColumn + 1];// pIdx.aiColumn[nColumn]; pIdx.zName = "auto-index"; pIdx.nColumn = nColumn; pIdx.pTable = pTable; n = 0; idxCols = 0; //for(pTerm=pWC.a; pTerm= BMS ? ( (Bitmask)1 ) << ( BMS - 1 ) : ( (Bitmask)1 ) << iCol; if ( ( idxCols & cMask ) == 0 ) { Expr pX = pTerm.pExpr; idxCols |= cMask; pIdx.aiColumn[n] = pTerm.u.leftColumn; pColl = sqlite3BinaryCompareCollSeq( pParse, pX.pLeft, pX.pRight ); pIdx.azColl[n] = ALWAYS( pColl != null ) ? pColl.zName : "BINARY"; n++; } } } Debug.Assert( (u32)n == pLevel.plan.nEq ); /* Add additional columns needed to make the automatic index into ** a covering index */ for ( i = 0; i < mxBitCol; i++ ) { if ( ( extraCols & ( ( (Bitmask)1 ) << i ) ) != 0 ) { pIdx.aiColumn[n] = i; pIdx.azColl[n] = "BINARY"; n++; } } if ( ( pSrc.colUsed & ( ( (Bitmask)1 ) << ( BMS - 1 ) ) ) != 0 ) { for ( i = BMS - 1; i < pTable.nCol; i++ ) { pIdx.aiColumn[n] = i; pIdx.azColl[n] = "BINARY"; n++; } } Debug.Assert( n == nColumn ); /* Create the automatic index */ pKeyinfo = sqlite3IndexKeyinfo( pParse, pIdx ); Debug.Assert( pLevel.iIdxCur >= 0 ); sqlite3VdbeAddOp4( v, OP_OpenAutoindex, pLevel.iIdxCur, nColumn + 1, 0, pKeyinfo, P4_KEYINFO_HANDOFF ); VdbeComment( v, "for %s", pTable.zName ); /* Fill the automatic index with content */ addrTop = sqlite3VdbeAddOp1( v, OP_Rewind, pLevel.iTabCur ); regRecord = sqlite3GetTempReg( pParse ); sqlite3GenerateIndexKey( pParse, pIdx, pLevel.iTabCur, regRecord, true ); sqlite3VdbeAddOp2( v, OP_IdxInsert, pLevel.iIdxCur, regRecord ); sqlite3VdbeChangeP5( v, OPFLAG_USESEEKRESULT ); sqlite3VdbeAddOp2( v, OP_Next, pLevel.iTabCur, addrTop + 1 ); sqlite3VdbeChangeP5( v, SQLITE_STMTSTATUS_AUTOINDEX ); sqlite3VdbeJumpHere( v, addrTop ); sqlite3ReleaseTempReg( pParse, regRecord ); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere( v, addrInit ); } #endif //* SQLITE_OMIT_AUTOMATIC_INDEX */ #if !SQLITE_OMIT_VIRTUALTABLE /* ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure ** by passing the pointer returned by this function to //sqlite3_free(). */ static sqlite3_index_info allocateIndexInfo( Parse pParse, WhereClause pWC, SrcList_item pSrc, ExprList pOrderBy ) { int i, j; int nTerm; sqlite3_index_constraint[] pIdxCons; sqlite3_index_orderby[] pIdxOrderBy; sqlite3_index_constraint_usage[] pUsage; WhereTerm pTerm; int nOrderBy; sqlite3_index_info pIdxInfo; #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "Recomputing index info for %s...\n", pSrc.pTab.zName ); #endif /* Count the number of possible WHERE clause constraints referring ** to this virtual table */ for ( i = nTerm = 0; i < pWC.nTerm; i++)//, pTerm++ ) { pTerm = pWC.a[i]; if ( pTerm.leftCursor != pSrc.iCursor ) continue; Debug.Assert( ( pTerm.eOperator & ( pTerm.eOperator - 1 ) ) == 0 ); testcase( pTerm.eOperator == WO_IN ); testcase( pTerm.eOperator == WO_ISNULL ); if ( ( pTerm.eOperator & ( WO_IN | WO_ISNULL ) ) != 0 ) continue; nTerm++; } /* If the ORDER BY clause contains only columns in the current ** virtual table then allocate space for the aOrderBy part of ** the sqlite3_index_info structure. */ nOrderBy = 0; if ( pOrderBy != null ) { for ( i = 0; i < pOrderBy.nExpr; i++ ) { Expr pExpr = pOrderBy.a[i].pExpr; if ( pExpr.op != TK_COLUMN || pExpr.iTable != pSrc.iCursor ) break; } if ( i == pOrderBy.nExpr ) { nOrderBy = pOrderBy.nExpr; } } /* Allocate the sqlite3_index_info structure */ pIdxInfo = new sqlite3_index_info(); //sqlite3DbMallocZero(pParse.db, sizeof(*pIdxInfo) //+ (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm //+ sizeof(*pIdxOrderBy)*nOrderBy ); //if ( pIdxInfo == null ) //{ // sqlite3ErrorMsg( pParse, "out of memory" ); // /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ // return null; //} /* Initialize the structure. The sqlite3_index_info structure contains ** many fields that are declared "const" to prevent xBestIndex from ** changing them. We have to do some funky casting in order to ** initialize those fields. */ pIdxCons = new sqlite3_index_constraint[nTerm];//(sqlite3_index_constraint)pIdxInfo[1]; pIdxOrderBy = new sqlite3_index_orderby[nOrderBy];//(sqlite3_index_orderby)pIdxCons[nTerm]; pUsage = new sqlite3_index_constraint_usage[nTerm];//(sqlite3_index_constraint_usage)pIdxOrderBy[nOrderBy]; pIdxInfo.nConstraint = nTerm; pIdxInfo.nOrderBy = nOrderBy; pIdxInfo.aConstraint = pIdxCons; pIdxInfo.aOrderBy = pIdxOrderBy; pIdxInfo.aConstraintUsage = pUsage; for ( i = j = 0; i < pWC.nTerm; i++)//, pTerm++ ) { pTerm = pWC.a[i]; if ( pTerm.leftCursor != pSrc.iCursor ) continue; Debug.Assert( ( pTerm.eOperator & ( pTerm.eOperator - 1 ) ) == 0 ); testcase( pTerm.eOperator == WO_IN ); testcase( pTerm.eOperator == WO_ISNULL ); if ( ( pTerm.eOperator & ( WO_IN | WO_ISNULL ) ) != 0 ) continue; if ( pIdxCons[j] == null ) pIdxCons[j] = new sqlite3_index_constraint(); pIdxCons[j].iColumn = pTerm.u.leftColumn; pIdxCons[j].iTermOffset = i; pIdxCons[j].op = (u8)pTerm.eOperator; /* The direct Debug.Assignment in the previous line is possible only because ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The ** following Debug.Asserts verify this fact. */ Debug.Assert( WO_EQ == SQLITE_INDEX_CONSTRAINT_EQ ); Debug.Assert( WO_LT == SQLITE_INDEX_CONSTRAINT_LT ); Debug.Assert( WO_LE == SQLITE_INDEX_CONSTRAINT_LE ); Debug.Assert( WO_GT == SQLITE_INDEX_CONSTRAINT_GT ); Debug.Assert( WO_GE == SQLITE_INDEX_CONSTRAINT_GE ); Debug.Assert( WO_MATCH == SQLITE_INDEX_CONSTRAINT_MATCH ); Debug.Assert( ( pTerm.eOperator & ( WO_EQ | WO_LT | WO_LE | WO_GT | WO_GE | WO_MATCH ) ) != 0 ); j++; } for ( i = 0; i < nOrderBy; i++ ) { Expr pExpr = pOrderBy.a[i].pExpr; if ( pIdxOrderBy[i] == null ) pIdxOrderBy[i] = new sqlite3_index_orderby(); pIdxOrderBy[i].iColumn = pExpr.iColumn; pIdxOrderBy[i].desc = pOrderBy.a[i].sortOrder != 0; } return pIdxInfo; } /* ** The table object reference passed as the second argument to this function ** must represent a virtual table. This function invokes the xBestIndex() ** method of the virtual table with the sqlite3_index_info pointer passed ** as the argument. ** ** If an error occurs, pParse is populated with an error message and a ** non-zero value is returned. Otherwise, 0 is returned and the output ** part of the sqlite3_index_info structure is left populated. ** ** Whether or not an error is returned, it is the responsibility of the ** caller to eventually free p.idxStr if p.needToFreeIdxStr indicates ** that this is required. */ static int vtabBestIndex( Parse pParse, Table pTab, sqlite3_index_info p ) { sqlite3_vtab pVtab = sqlite3GetVTable( pParse.db, pTab ).pVtab; int i; int rc; #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "xBestIndex for %s\n", pTab.zName ); #endif TRACE_IDX_INPUTS( p ); rc = pVtab.pModule.xBestIndex( pVtab, ref p ); TRACE_IDX_OUTPUTS( p ); if ( rc != SQLITE_OK ) { //if ( rc == SQLITE_NOMEM ) //{ // pParse.db.mallocFailed = 1; //} // else if ( string.IsNullOrEmpty( pVtab.zErrMsg ) ) { sqlite3ErrorMsg( pParse, "%s", sqlite3ErrStr( rc ) ); } else { sqlite3ErrorMsg( pParse, "%s", pVtab.zErrMsg ); } } //sqlite3_free( pVtab.zErrMsg ); pVtab.zErrMsg = null; for ( i = 0; i < p.nConstraint; i++ ) { if ( !p.aConstraint[i].usable && p.aConstraintUsage[i].argvIndex > 0 ) { sqlite3ErrorMsg( pParse, "table %s: xBestIndex returned an invalid plan", pTab.zName ); } } return pParse.nErr; } /* ** Compute the best index for a virtual table. ** ** The best index is computed by the xBestIndex method of the virtual ** table module. This routine is really just a wrapper that sets up ** the sqlite3_index_info structure that is used to communicate with ** xBestIndex. ** ** In a join, this routine might be called multiple times for the ** same virtual table. The sqlite3_index_info structure is created ** and initialized on the first invocation and reused on all subsequent ** invocations. The sqlite3_index_info structure is also used when ** code is generated to access the virtual table. The whereInfoDelete() ** routine takes care of freeing the sqlite3_index_info structure after ** everybody has finished with it. */ static void bestVirtualIndex( Parse pParse, /* The parsing context */ WhereClause pWC, /* The WHERE clause */ SrcList_item pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors not available for index */ Bitmask notValid, /* Cursors not valid for any purpose */ ExprList pOrderBy, /* The order by clause */ ref WhereCost pCost, /* Lowest cost query plan */ ref sqlite3_index_info ppIdxInfo /* Index information passed to xBestIndex */ ) { Table pTab = pSrc.pTab; sqlite3_index_info pIdxInfo; sqlite3_index_constraint pIdxCons; sqlite3_index_constraint_usage[] pUsage = null; WhereTerm pTerm; int i, j; int nOrderBy; double rCost; /* Make sure wsFlags is initialized to some sane value. Otherwise, if the ** malloc in allocateIndexInfo() fails and this function returns leaving ** wsFlags in an uninitialized state, the caller may behave unpredictably. */ pCost = new WhereCost();//memset(pCost, 0, sizeof(*pCost)); pCost.plan.wsFlags = WHERE_VIRTUALTABLE; /* If the sqlite3_index_info structure has not been previously ** allocated and initialized, then allocate and initialize it now. */ pIdxInfo = ppIdxInfo; if ( pIdxInfo == null ) { ppIdxInfo = pIdxInfo = allocateIndexInfo( pParse, pWC, pSrc, pOrderBy ); } if ( pIdxInfo == null ) { return; } /* At this point, the sqlite3_index_info structure that pIdxInfo points ** to will have been initialized, either during the current invocation or ** during some prior invocation. Now we just have to customize the ** details of pIdxInfo for the current invocation and pDebug.Ass it to ** xBestIndex. */ /* The module name must be defined. Also, by this point there must ** be a pointer to an sqlite3_vtab structure. Otherwise ** sqlite3ViewGetColumnNames() would have picked up the error. */ Debug.Assert( pTab.azModuleArg != null && pTab.azModuleArg[0] != null ); Debug.Assert( sqlite3GetVTable( pParse.db, pTab ) != null ); /* Set the aConstraint[].usable fields and initialize all ** output variables to zero. ** ** aConstraint[].usable is true for constraints where the right-hand ** side contains only references to tables to the left of the current ** table. In other words, if the constraint is of the form: ** ** column = expr ** ** and we are evaluating a join, then the constraint on column is ** only valid if all tables referenced in expr occur to the left ** of the table containing column. ** ** The aConstraints[] array contains entries for all constraints ** on the current table. That way we only have to compute it once ** even though we might try to pick the best index multiple times. ** For each attempt at picking an index, the order of tables in the ** join might be different so we have to recompute the usable flag ** each time. */ //pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; //pUsage = pIdxInfo->aConstraintUsage; for ( i = 0; i < pIdxInfo.nConstraint; i++) { pIdxCons = pIdxInfo.aConstraint[i]; pUsage = pIdxInfo.aConstraintUsage; j = pIdxCons.iTermOffset; pTerm = pWC.a[j]; pIdxCons.usable = ( pTerm.prereqRight & notReady ) == 0; pUsage[i] = new sqlite3_index_constraint_usage(); } // memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo.nConstraint); if ( pIdxInfo.needToFreeIdxStr!=0 ) { //sqlite3_free(ref pIdxInfo.idxStr); } pIdxInfo.idxStr = null; pIdxInfo.idxNum = 0; pIdxInfo.needToFreeIdxStr = 0; pIdxInfo.orderByConsumed = false; /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ pIdxInfo.estimatedCost = SQLITE_BIG_DBL / ( (double)2 ); nOrderBy = pIdxInfo.nOrderBy; if ( null == pOrderBy ) { pIdxInfo.nOrderBy = 0; } if ( vtabBestIndex( pParse, pTab, pIdxInfo ) != 0 ) { return; } //pIdxCons = (sqlite3_index_constraint)pIdxInfo.aConstraint; for ( i = 0; i < pIdxInfo.nConstraint; i++ ) { if ( pUsage[i].argvIndex > 0 ) { //pCost.used |= pWC.a[pIdxCons[i].iTermOffset].prereqRight; pCost.used |= pWC.a[pIdxInfo.aConstraint[i].iTermOffset].prereqRight; } } /* If there is an ORDER BY clause, and the selected virtual table index ** does not satisfy it, increase the cost of the scan accordingly. This ** matches the processing for non-virtual tables in bestBtreeIndex(). */ rCost = pIdxInfo.estimatedCost; if ( pOrderBy != null && !pIdxInfo.orderByConsumed ) { rCost += estLog( rCost ) * rCost; } /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the ** inital value of lowestCost in this loop. If it is, then the ** (cost= SQLITE_TEXT ) break; if ( roundUp != 0 ) { if ( aSample[i].u.r > r ) break; } else { if ( aSample[i].u.r >= r ) break; } } } else if ( eType == SQLITE_NULL ) { i = 0; if ( roundUp != 0 ) { while ( i < SQLITE_INDEX_SAMPLES && aSample[i].eType == SQLITE_NULL ) i++; } } else { sqlite3 db = pParse.db; CollSeq pColl; string z; int n; /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */ Debug.Assert( eType == SQLITE_TEXT || eType == SQLITE_BLOB ); if ( eType == SQLITE_BLOB ) { byte[] blob = sqlite3_value_blob( pVal ); z = Encoding.UTF8.GetString( blob, 0, blob.Length ); pColl = db.pDfltColl; Debug.Assert( pColl.enc == SQLITE_UTF8 ); } else { pColl = sqlite3GetCollSeq( db, SQLITE_UTF8, null, pIdx.azColl[0] ); if ( pColl == null ) { sqlite3ErrorMsg( pParse, "no such collation sequence: %s", pIdx.azColl ); return SQLITE_ERROR; } z = sqlite3ValueText( pVal, pColl.enc ); //if( null==z ){ // return SQLITE_NOMEM; //} Debug.Assert( z != string.Empty && pColl != null && pColl.xCmp != null ); } n = sqlite3ValueBytes( pVal, pColl.enc ); for ( i = 0; i < SQLITE_INDEX_SAMPLES; i++ ) { int c; int eSampletype = aSample[i].eType; if ( eSampletype == SQLITE_NULL || eSampletype < eType ) continue; if ( ( eSampletype != eType ) ) break; #if !SQLITE_OMIT_UTF16 if( pColl.enc!=SQLITE_UTF8 ){ int nSample; string zSample; zSample = sqlite3Utf8to16( db, pColl.enc, aSample[i].u.z, aSample[i].nByte, ref nSample ); zSample = aSample[i].u.z; nSample = aSample[i].u.z.Length; //if( null==zSample ){ // Debug.Assert( db.mallocFailed ); // return SQLITE_NOMEM; //} c = pColl.xCmp(pColl.pUser, nSample, zSample, n, z); sqlite3DbFree(db, ref zSample); }else #endif { c = pColl.xCmp( pColl.pUser, aSample[i].nByte, aSample[i].u.z, n, z ); } if ( c - roundUp >= 0 ) break; } } Debug.Assert( i >= 0 && i <= SQLITE_INDEX_SAMPLES ); piRegion = i; } return SQLITE_OK; } #endif //* #if SQLITE_ENABLE_STAT2 */ /* ** If expression pExpr represents a literal value, set *pp to point to ** an sqlite3_value structure containing the same value, with affinity ** aff applied to it, before returning. It is the responsibility of the ** caller to eventually release this structure by passing it to ** sqlite3ValueFree(). ** ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr ** is an SQL variable that currently has a non-NULL value bound to it, ** create an sqlite3_value structure containing this value, again with ** affinity aff applied to it, instead. ** ** If neither of the above apply, set *pp to NULL. ** ** If an error occurs, return an error code. Otherwise, SQLITE_OK. */ #if SQLITE_ENABLE_STAT2 static int valueFromExpr( Parse pParse, Expr pExpr, char aff, ref sqlite3_value pp ) { if ( pExpr.op == TK_VARIABLE || ( pExpr.op == TK_REGISTER && pExpr.op2 == TK_VARIABLE ) ) { int iVar = pExpr.iColumn; sqlite3VdbeSetVarmask( pParse.pVdbe, iVar ); /* IMP: R-23257-02778 */ pp = sqlite3VdbeGetValue( pParse.pReprepare, iVar, (u8)aff ); return SQLITE_OK; } return sqlite3ValueFromExpr( pParse.db, pExpr, SQLITE_UTF8, aff, ref pp ); } #endif /* ** This function is used to estimate the number of rows that will be visited ** by scanning an index for a range of values. The range may have an upper ** bound, a lower bound, or both. The WHERE clause terms that set the upper ** and lower bounds are represented by pLower and pUpper respectively. For ** example, assuming that index p is on t1(a): ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** |_____| |_____| ** | | ** pLower pUpper ** ** If either of the upper or lower bound is not present, then NULL is passed in ** place of the corresponding WhereTerm. ** ** The nEq parameter is passed the index of the index column subject to the ** range constraint. Or, equivalently, the number of equality constraints ** optimized by the proposed index scan. For example, assuming index p is ** on t1(a, b), and the SQL query is: ** ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... ** ** then nEq should be passed the value 1 (as the range restricted column, ** b, is the second left-most column of the index). Or, if the query is: ** ** ... FROM t1 WHERE a > ? AND a < ? ... ** ** then nEq should be passed 0. ** ** The returned value is an integer between 1 and 100, inclusive. A return ** value of 1 indicates that the proposed range scan is expected to visit ** approximately 1/100th (1%) of the rows selected by the nEq equality ** constraints (if any). A return value of 100 indicates that it is expected ** that the range scan will visit every row (100%) selected by the equality ** constraints. ** ** In the absence of sqlite_stat2 ANALYZE data, each range inequality ** reduces the search space by 3/4ths. Hence a single constraint (x>?) ** results in a return of 25 and a range constraint (x>? AND x123" Might be NULL */ WhereTerm pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ out int piEst /* OUT: Return value */ ) { int rc = SQLITE_OK; #if SQLITE_ENABLE_STAT2 if ( nEq == 0 && p.aSample != null ) { sqlite3_value pLowerVal = null; sqlite3_value pUpperVal = null; int iEst; int iLower = 0; int iUpper = SQLITE_INDEX_SAMPLES; int roundUpUpper = 0; int roundUpLower = 0; char aff = p.pTable.aCol[p.aiColumn[0]].affinity; if ( pLower != null ) { Expr pExpr = pLower.pExpr.pRight; rc = valueFromExpr( pParse, pExpr, aff, ref pLowerVal ); Debug.Assert( pLower.eOperator == WO_GT || pLower.eOperator == WO_GE ); roundUpLower = ( pLower.eOperator == WO_GT ) ? 1 : 0; } if ( rc == SQLITE_OK && pUpper != null ) { Expr pExpr = pUpper.pExpr.pRight; rc = valueFromExpr( pParse, pExpr, aff, ref pUpperVal ); Debug.Assert( pUpper.eOperator == WO_LT || pUpper.eOperator == WO_LE ); roundUpUpper = ( pUpper.eOperator == WO_LE ) ? 1 : 0; } if ( rc != SQLITE_OK || ( pLowerVal == null && pUpperVal == null ) ) { sqlite3ValueFree( ref pLowerVal ); sqlite3ValueFree( ref pUpperVal ); goto range_est_fallback; } else if ( pLowerVal == null ) { rc = whereRangeRegion( pParse, p, pUpperVal, roundUpUpper, out iUpper ); if ( pLower != null ) iLower = iUpper / 2; } else if ( pUpperVal == null ) { rc = whereRangeRegion( pParse, p, pLowerVal, roundUpLower, out iLower ); if ( pUpper != null ) iUpper = ( iLower + SQLITE_INDEX_SAMPLES + 1 ) / 2; } else { rc = whereRangeRegion( pParse, p, pUpperVal, roundUpUpper, out iUpper ); if ( rc == SQLITE_OK ) { rc = whereRangeRegion( pParse, p, pLowerVal, roundUpLower, out iLower ); } } WHERETRACE( "range scan regions: %d..%d\n", iLower, iUpper ); iEst = iUpper - iLower; testcase( iEst == SQLITE_INDEX_SAMPLES ); Debug.Assert( iEst <= SQLITE_INDEX_SAMPLES ); if ( iEst < 1 ) { piEst = 50 / SQLITE_INDEX_SAMPLES; } else { piEst = ( iEst * 100 ) / SQLITE_INDEX_SAMPLES; } sqlite3ValueFree( ref pLowerVal ); sqlite3ValueFree( ref pUpperVal ); return rc; } range_est_fallback: #else UNUSED_PARAMETER(pParse); UNUSED_PARAMETER(p); UNUSED_PARAMETER(nEq); #endif Debug.Assert( pLower != null || pUpper != null ); piEst = 100; if ( pLower != null && ( pLower.wtFlags & TERM_VNULL ) == 0 ) piEst /= 4; if ( pUpper != null ) piEst /= 4; return rc; } #if SQLITE_ENABLE_STAT2 /* ** Estimate the number of rows that will be returned based on ** an equality constraint x=VALUE and where that VALUE occurs in ** the histogram data. This only works when x is the left-most ** column of an index and sqlite_stat2 histogram data is available ** for that index. When pExpr==NULL that means the constraint is ** "x IS NULL" instead of "x=VALUE". ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereEqualScanEst( Parse pParse, /* Parsing & code generating context */ Index p, /* The index whose left-most column is pTerm */ Expr pExpr, /* Expression for VALUE in the x=VALUE constraint */ ref double pnRow /* Write the revised row estimate here */ ) { sqlite3_value pRhs = null;/* VALUE on right-hand side of pTerm */ int iLower = 0; int iUpper = 0; /* Range of histogram regions containing pRhs */ char aff; /* Column affinity */ int rc; /* Subfunction return code */ double nRowEst; /* New estimate of the number of rows */ Debug.Assert( p.aSample != null ); aff = p.pTable.aCol[p.aiColumn[0]].affinity; if ( pExpr != null ) { rc = valueFromExpr( pParse, pExpr, aff, ref pRhs ); if ( rc != 0 ) goto whereEqualScanEst_cancel; } else { pRhs = sqlite3ValueNew( pParse.db ); } if ( pRhs == null ) return SQLITE_NOTFOUND; rc = whereRangeRegion( pParse, p, pRhs, 0, out iLower ); if ( rc != 0 ) goto whereEqualScanEst_cancel; rc = whereRangeRegion( pParse, p, pRhs, 1, out iUpper ); if ( rc != 0 ) goto whereEqualScanEst_cancel; WHERETRACE( "equality scan regions: %d..%d\n", iLower, iUpper ); if ( iLower >= iUpper ) { nRowEst = p.aiRowEst[0] / ( SQLITE_INDEX_SAMPLES * 2 ); if ( nRowEst < pnRow ) pnRow = nRowEst; } else { nRowEst = ( iUpper - iLower ) * p.aiRowEst[0] / SQLITE_INDEX_SAMPLES; pnRow = nRowEst; } whereEqualScanEst_cancel: sqlite3ValueFree( ref pRhs ); return rc; } #endif //* defined(SQLITE_ENABLE_STAT2) */ #if SQLITE_ENABLE_STAT2 /* ** Estimate the number of rows that will be returned based on ** an IN constraint where the right-hand side of the IN operator ** is a list of values. Example: ** ** WHERE x IN (1,2,3,4) ** ** Write the estimated row count into *pnRow and return SQLITE_OK. ** If unable to make an estimate, leave *pnRow unchanged and return ** non-zero. ** ** This routine can fail if it is unable to load a collating sequence ** required for string comparison, or if unable to allocate memory ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereInScanEst( Parse pParse, /* Parsing & code generating context */ Index p, /* The index whose left-most column is pTerm */ ExprList pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ ref double pnRow /* Write the revised row estimate here */ ) { sqlite3_value pVal = null;/* One value from list */ int iLower = 0; int iUpper = 0; /* Range of histogram regions containing pRhs */ char aff; /* Column affinity */ int rc = SQLITE_OK; /* Subfunction return code */ double nRowEst; /* New estimate of the number of rows */ int nSpan = 0; /* Number of histogram regions spanned */ int nSingle = 0; /* Histogram regions hit by a single value */ int nNotFound = 0; /* Count of values that are not constants */ int i; /* Loop counter */ u8[] aSpan = new u8[SQLITE_INDEX_SAMPLES + 1]; /* Histogram regions that are spanned */ u8[] aSingle = new u8[SQLITE_INDEX_SAMPLES + 1]; /* Histogram regions hit once */ Debug.Assert( p.aSample != null ); aff = p.pTable.aCol[p.aiColumn[0]].affinity; //memset(aSpan, 0, sizeof(aSpan)); //memset(aSingle, 0, sizeof(aSingle)); for ( i = 0; i < pList.nExpr; i++ ) { sqlite3ValueFree( ref pVal ); rc = valueFromExpr( pParse, pList.a[i].pExpr, aff, ref pVal ); if ( rc != 0 ) break; if ( pVal == null || sqlite3_value_type( pVal ) == SQLITE_NULL ) { nNotFound++; continue; } rc = whereRangeRegion( pParse, p, pVal, 0, out iLower ); if ( rc != 0 ) break; rc = whereRangeRegion( pParse, p, pVal, 1, out iUpper ); if ( rc != 0 ) break; if ( iLower >= iUpper ) { aSingle[iLower] = 1; } else { Debug.Assert( iLower >= 0 && iUpper <= SQLITE_INDEX_SAMPLES ); while ( iLower < iUpper ) aSpan[iLower++] = 1; } } if ( rc == SQLITE_OK ) { for ( i = nSpan = 0; i <= SQLITE_INDEX_SAMPLES; i++ ) { if ( aSpan[i] != 0 ) { nSpan++; } else if ( aSingle[i] != 0 ) { nSingle++; } } nRowEst = ( nSpan * 2 + nSingle ) * p.aiRowEst[0] / ( 2 * SQLITE_INDEX_SAMPLES ) + nNotFound * p.aiRowEst[1]; if ( nRowEst > p.aiRowEst[0] ) nRowEst = p.aiRowEst[0]; pnRow = nRowEst; WHERETRACE( "IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n", nSpan, nSingle, nNotFound, nRowEst ); } sqlite3ValueFree( ref pVal ); return rc; } #endif //* defined(SQLITE_ENABLE_STAT2) */ /* ** Find the best query plan for accessing a particular table. Write the ** best query plan and its cost into the WhereCost object supplied as the ** last parameter. ** ** The lowest cost plan wins. The cost is an estimate of the amount of ** CPU and disk I/O needed to process the requested result. ** Factors that influence cost include: ** ** * The estimated number of rows that will be retrieved. (The ** fewer the better.) ** ** * Whether or not sorting must occur. ** ** * Whether or not there must be separate lookups in the ** index and in the main table. ** ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in ** the SQL statement, then this function only considers plans using the ** named index. If no such plan is found, then the returned cost is ** SQLITE_BIG_DBL. If a plan is found that uses the named index, ** then the cost is calculated in the usual way. ** ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table ** in the SELECT statement, then no indexes are considered. However, the ** selected plan may still take advantage of the built-in rowid primary key ** index. */ static void bestBtreeIndex( Parse pParse, /* The parsing context */ WhereClause pWC, /* The WHERE clause */ SrcList_item pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors not available for indexing */ Bitmask notValid, /* Cursors not available for any purpose */ ExprList pOrderBy, /* The ORDER BY clause */ ref WhereCost pCost /* Lowest cost query plan */ ) { int iCur = pSrc.iCursor; /* The cursor of the table to be accessed */ Index pProbe; /* An index we are evaluating */ Index pIdx; /* Copy of pProbe, or zero for IPK index */ u32 eqTermMask; /* Current mask of valid equality operators */ u32 idxEqTermMask; /* Index mask of valid equality operators */ Index sPk; /* A fake index object for the primary key */ int[] aiRowEstPk = new int[2]; /* The aiRowEst[] value for the sPk index */ int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ int wsFlagMask; /* Allowed flags in pCost.plan.wsFlag */ /* Initialize the cost to a worst-case value */ if ( pCost == null ) pCost = new WhereCost(); else pCost.Clear(); //memset(pCost, 0, sizeof(*pCost)); pCost.rCost = SQLITE_BIG_DBL; /* If the pSrc table is the right table of a LEFT JOIN then we may not ** use an index to satisfy IS NULL constraints on that table. This is ** because columns might end up being NULL if the table does not match - ** a circumstance which the index cannot help us discover. Ticket #2177. */ if ( ( pSrc.jointype & JT_LEFT ) != 0 ) { idxEqTermMask = WO_EQ | WO_IN; } else { idxEqTermMask = WO_EQ | WO_IN | WO_ISNULL; } if ( pSrc.pIndex != null ) { /* An INDEXED BY clause specifies a particular index to use */ pIdx = pProbe = pSrc.pIndex; wsFlagMask = ~( WHERE_ROWID_EQ | WHERE_ROWID_RANGE ); eqTermMask = idxEqTermMask; } else { /* There is no INDEXED BY clause. Create a fake Index object in local ** variable sPk to represent the rowid primary key index. Make this ** fake index the first in a chain of Index objects with all of the real ** indices to follow */ Index pFirst; /* First of real indices on the table */ sPk = new Index(); // memset( &sPk, 0, sizeof( Index ) ); sPk.aSortOrder = new byte[1]; sPk.azColl = new string[1]; sPk.azColl[0] = string.Empty; sPk.nColumn = 1; sPk.aiColumn = new int[1]; sPk.aiColumn[0] = aiColumnPk; sPk.aiRowEst = aiRowEstPk; sPk.onError = OE_Replace; sPk.pTable = pSrc.pTab; aiRowEstPk[0] = (int)pSrc.pTab.nRowEst; aiRowEstPk[1] = 1; pFirst = pSrc.pTab.pIndex; if ( pSrc.notIndexed == 0 ) { /* The real indices of the table are only considered if the ** NOT INDEXED qualifier is omitted from the FROM clause */ sPk.pNext = pFirst; } pProbe = sPk; wsFlagMask = ~( WHERE_COLUMN_IN | WHERE_COLUMN_EQ | WHERE_COLUMN_NULL | WHERE_COLUMN_RANGE ); eqTermMask = WO_EQ | WO_IN; pIdx = null; } /* Loop over all indices looking for the best one to use */ for ( ; pProbe != null; pIdx = pProbe = pProbe.pNext ) { int[] aiRowEst = pProbe.aiRowEst; double cost; /* Cost of using pProbe */ double nRow; /* Estimated number of rows in result set */ double log10N = 0; /* base-10 logarithm of nRow (inexact) */ int rev = 0; /* True to scan in reverse order */ int wsFlags = 0; Bitmask used = 0; /* The following variables are populated based on the properties of ** index being evaluated. They are then used to determine the expected ** cost and number of rows returned. ** ** nEq: ** Number of equality terms that can be implemented using the index. ** In other words, the number of initial fields in the index that ** are used in == or IN or NOT NULL constraints of the WHERE clause. ** ** nInMul: ** The "in-multiplier". This is an estimate of how many seek operations ** SQLite must perform on the index in question. For example, if the ** WHERE clause is: ** ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) ** ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is ** set to 9. Given the same schema and either of the following WHERE ** clauses: ** ** WHERE a = 1 ** WHERE a >= 2 ** ** nInMul is set to 1. ** ** If there exists a WHERE term of the form "x IN (SELECT ...)", then ** the sub-select is assumed to return 25 rows for the purposes of ** determining nInMul. ** ** bInEst: ** Set to true if there was at least one "x IN (SELECT ...)" term used ** in determining the value of nInMul. Note that the RHS of the ** IN operator must be a SELECT, not a value list, for this variable ** to be true. ** ** estBound: ** An estimate on the amount of the table that must be searched. A ** value of 100 means the entire table is searched. Range constraints ** might reduce this to a value less than 100 to indicate that only ** a fraction of the table needs searching. In the absence of ** sqlite_stat2 ANALYZE data, a single inequality reduces the search ** space to 1/4rd its original size. So an x>? constraint reduces ** estBound to 25. Two constraints (x>? AND x aiRowEst[0] ) { nRow = aiRowEst[0] / 2; nInMul = (int)( nRow / aiRowEst[nEq] ); } #if SQLITE_ENABLE_STAT2 /* If the constraint is of the form x=VALUE and histogram ** data is available for column x, then it might be possible ** to get a better estimate on the number of rows based on ** VALUE and how common that value is according to the histogram. */ if ( nRow > (double)1 && nEq == 1 && pFirstTerm != null ) { if ( ( pFirstTerm.eOperator & ( WO_EQ | WO_ISNULL ) ) != 0 ) { testcase( pFirstTerm.eOperator == WO_EQ ); testcase( pFirstTerm.eOperator == WO_ISNULL ); whereEqualScanEst( pParse, pProbe, pFirstTerm.pExpr.pRight, ref nRow ); } else if ( pFirstTerm.eOperator == WO_IN && bInEst == 0 ) { whereInScanEst( pParse, pProbe, pFirstTerm.pExpr.x.pList, ref nRow ); } } #endif //* SQLITE_ENABLE_STAT2 */ /* Adjust the number of output rows and downward to reflect rows ** that are excluded by range constraints. */ nRow = ( nRow * (double)estBound ) / (double)100; if ( nRow < 1 ) nRow = 1; /* Experiments run on real SQLite databases show that the time needed ** to do a binary search to locate a row in a table or index is roughly ** log10(N) times the time to move from one row to the next row within ** a table or index. The actual times can vary, with the size of ** records being an important factor. Both moves and searches are ** slower with larger records, presumably because fewer records fit ** on one page and hence more pages have to be fetched. ** ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do ** not give us data on the relative sizes of table and index records. ** So this computation assumes table records are about twice as big ** as index records */ if ( ( wsFlags & WHERE_NOT_FULLSCAN ) == 0 ) { /* The cost of a full table scan is a number of move operations equal ** to the number of rows in the table. ** ** We add an additional 4x penalty to full table scans. This causes ** the cost function to err on the side of choosing an index over ** choosing a full scan. This 4x full-scan penalty is an arguable ** decision and one which we expect to revisit in the future. But ** it seems to be working well enough at the moment. */ cost = aiRowEst[0] * 4; } else { log10N = estLog( aiRowEst[0] ); cost = nRow; if ( pIdx != null ) { if ( bLookup != 0 ) { /* For an index lookup followed by a table lookup: ** nInMul index searches to find the start of each index range ** + nRow steps through the index ** + nRow table searches to lookup the table entry using the rowid */ cost += ( nInMul + nRow ) * log10N; } else { /* For a covering index: ** nInMul index searches to find the initial entry ** + nRow steps through the index */ cost += nInMul * log10N; } } else { /* For a rowid primary key lookup: ** nInMult table searches to find the initial entry for each range ** + nRow steps through the table */ cost += nInMul * log10N; } } /* Add in the estimated cost of sorting the result. Actual experimental ** measurements of sorting performance in SQLite show that sorting time ** adds C*N*log10(N) to the cost, where N is the number of rows to be ** sorted and C is a factor between 1.95 and 4.3. We will split the ** difference and select C of 3.0. */ if ( bSort != 0 ) { cost += nRow * estLog( nRow ) * 3; } /**** Cost of using this index has now been computed ****/ /* If there are additional constraints on this table that cannot ** be used with the current index, but which might lower the number ** of output rows, adjust the nRow value accordingly. This only ** matters if the current index is the least costly, so do not bother ** with this step if we already know this index will not be chosen. ** Also, never reduce the output row count below 2 using this step. ** ** It is critical that the notValid mask be used here instead of ** the notReady mask. When computing an "optimal" index, the notReady ** mask will only have one bit set - the bit for the current table. ** The notValid mask, on the other hand, always has all bits set for ** tables that are not in outer loops. If notReady is used here instead ** of notValid, then a optimal index that depends on inner joins loops ** might be selected even when there exists an optimal index that has ** no such dependency. */ if ( nRow > 2 && cost <= pCost.rCost ) { //int k; /* Loop counter */ int nSkipEq = nEq; /* Number of == constraints to skip */ int nSkipRange = nBound; /* Number of < constraints to skip */ Bitmask thisTab; /* Bitmap for pSrc */ thisTab = getMask( pWC.pMaskSet, iCur ); for ( int ipTerm = 0, k = pWC.nTerm; nRow > 2 && k != 0; k--, ipTerm++ )//pTerm++) { pTerm = pWC.a[ipTerm]; if ( ( pTerm.wtFlags & TERM_VIRTUAL ) != 0 ) continue; if ( ( pTerm.prereqAll & notValid ) != thisTab ) continue; if ( ( pTerm.eOperator & ( WO_EQ | WO_IN | WO_ISNULL ) ) != 0 ) { if ( nSkipEq != 0 ) { /* Ignore the first nEq equality matches since the index ** has already accounted for these */ nSkipEq--; } else { /* Assume each additional equality match reduces the result ** set size by a factor of 10 */ nRow /= 10; } } else if ( ( pTerm.eOperator & ( WO_LT | WO_LE | WO_GT | WO_GE ) ) != 0 ) { if ( nSkipRange != 0 ) { /* Ignore the first nSkipRange range constraints since the index ** has already accounted for these */ nSkipRange--; } else { /* Assume each additional range constraint reduces the result ** set size by a factor of 3. Indexed range constraints reduce ** the search space by a larger factor: 4. We make indexed range ** more selective intentionally because of the subjective ** observation that indexed range constraints really are more ** selective in practice, on average. */ nRow /= 3; } } else if ( pTerm.eOperator != WO_NOOP ) { /* Any other expression lowers the output row count by half */ nRow /= 2; } } if ( nRow < 2 ) nRow = 2; } #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n" + " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n", pSrc.pTab.zName, ( pIdx != null ? pIdx.zName : "ipk" ), nEq, nInMul, estBound, bSort, bLookup, wsFlags, notReady, log10N, cost, used ); #endif /* If this index is the best we have seen so far, then record this ** index and its cost in the pCost structure. */ if ( ( null == pIdx || wsFlags != 0 ) && ( cost < pCost.rCost || ( cost <= pCost.rCost && nRow < pCost.plan.nRow ) ) ) { pCost.rCost = cost; pCost.used = used; pCost.plan.nRow = nRow; pCost.plan.wsFlags = (uint)( wsFlags & wsFlagMask ); pCost.plan.nEq = (uint)nEq; pCost.plan.u.pIdx = pIdx; } /* If there was an INDEXED BY clause, then only that one index is ** considered. */ if ( pSrc.pIndex != null ) break; /* Reset masks for the next index in the loop */ wsFlagMask = ~( WHERE_ROWID_EQ | WHERE_ROWID_RANGE ); eqTermMask = idxEqTermMask; } /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag ** is set, then reverse the order that the index will be scanned ** in. This is used for application testing, to help find cases ** where application behaviour depends on the (undefined) order that ** SQLite outputs rows in in the absence of an ORDER BY clause. */ if ( null == pOrderBy && ( pParse.db.flags & SQLITE_ReverseOrder ) != 0 ) { pCost.plan.wsFlags |= WHERE_REVERSE; } Debug.Assert( pOrderBy != null || ( pCost.plan.wsFlags & WHERE_ORDERBY ) == 0 ); Debug.Assert( pCost.plan.u.pIdx == null || ( pCost.plan.wsFlags & WHERE_ROWID_EQ ) == 0 ); Debug.Assert( pSrc.pIndex == null || pCost.plan.u.pIdx == null || pCost.plan.u.pIdx == pSrc.pIndex ); #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "best index is: %s\n", ( ( pCost.plan.wsFlags & WHERE_NOT_FULLSCAN ) == 0 ? "none" : pCost.plan.u.pIdx != null ? pCost.plan.u.pIdx.zName : "ipk" ) ); #endif bestOrClauseIndex( pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost ); bestAutomaticIndex( pParse, pWC, pSrc, notReady, pCost ); pCost.plan.wsFlags |= (u32)eqTermMask; } /* ** Find the query plan for accessing table pSrc.pTab. Write the ** best query plan and its cost into the WhereCost object supplied ** as the last parameter. This function may calculate the cost of ** both real and virtual table scans. */ static void bestIndex( Parse pParse, /* The parsing context */ WhereClause pWC, /* The WHERE clause */ SrcList_item pSrc, /* The FROM clause term to search */ Bitmask notReady, /* Mask of cursors not available for indexing */ Bitmask notValid, /* Cursors not available for any purpose */ ExprList pOrderBy, /* The ORDER BY clause */ ref WhereCost pCost /* Lowest cost query plan */ ) { #if !SQLITE_OMIT_VIRTUALTABLE if ( IsVirtual( pSrc.pTab ) ) { sqlite3_index_info p = null; bestVirtualIndex( pParse, pWC, pSrc, notReady, notValid, pOrderBy, ref pCost, ref p ); if ( p.needToFreeIdxStr != 0 ) { //sqlite3_free(ref p.idxStr); } sqlite3DbFree( pParse.db, ref p ); } else #endif { bestBtreeIndex( pParse, pWC, pSrc, notReady, notValid, pOrderBy, ref pCost ); } } /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON ** or USING clause of that join. ** ** Consider the term t2.z='ok' in the following queries: ** ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are ** completely satisfied by indices. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get ** the wrong answer. See ticket #813. */ static void disableTerm( WhereLevel pLevel, WhereTerm pTerm ) { if ( pTerm != null && ( pTerm.wtFlags & TERM_CODED ) == 0 && ( pLevel.iLeftJoin == 0 || ExprHasProperty( pTerm.pExpr, EP_FromJoin ) ) ) { pTerm.wtFlags |= TERM_CODED; if ( pTerm.iParent >= 0 ) { WhereTerm pOther = pTerm.pWC.a[pTerm.iParent]; if ( ( --pOther.nChild ) == 0 ) { disableTerm( pLevel, pOther ); } } } } /* ** Code an OP_Affinity opcode to apply the column affinity string zAff ** to the n registers starting at base. ** ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the ** beginning and end of zAff are ignored. If all entries in zAff are ** SQLITE_AFF_NONE, then no code gets generated. ** ** This routine makes its own copy of zAff so that the caller is free ** to modify zAff after this routine returns. */ static void codeApplyAffinity( Parse pParse, int _base, int n, string zAff ) { Vdbe v = pParse.pVdbe; //if (zAff == 0) //{ // Debug.Assert(pParse.db.mallocFailed); // return; //} Debug.Assert( v != null ); /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning ** and end of the affinity string. */ while ( n > 0 && zAff[0] == SQLITE_AFF_NONE ) { n--; _base++; zAff = zAff.Substring( 1 );// zAff++; } while ( n > 1 && zAff[n - 1] == SQLITE_AFF_NONE ) { n--; } /* Code the OP_Affinity opcode if there is anything left to do. */ if ( n > 0 ) { sqlite3VdbeAddOp2( v, OP_Affinity, _base, n ); sqlite3VdbeChangeP4( v, -1, zAff, n ); sqlite3ExprCacheAffinityChange( pParse, _base, n ); } } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. ** ** The current value for the constraint is left in register iReg. ** ** For a constraint of the form X=expr, the expression is evaluated and its ** result is left on the stack. For constraints of the form X IN (...) ** this routine sets up a loop that will iterate over all values of X. */ static int codeEqualityTerm( Parse pParse, /* The parsing context */ WhereTerm pTerm, /* The term of the WHERE clause to be coded */ WhereLevel pLevel, /* When level of the FROM clause we are working on */ int iTarget /* Attempt to leave results in this register */ ) { Expr pX = pTerm.pExpr; Vdbe v = pParse.pVdbe; int iReg; /* Register holding results */ Debug.Assert( iTarget > 0 ); if ( pX.op == TK_EQ ) { iReg = sqlite3ExprCodeTarget( pParse, pX.pRight, iTarget ); } else if ( pX.op == TK_ISNULL ) { iReg = iTarget; sqlite3VdbeAddOp2( v, OP_Null, 0, iReg ); #if !SQLITE_OMIT_SUBQUERY } else { int eType; int iTab; InLoop pIn; Debug.Assert( pX.op == TK_IN ); iReg = iTarget; int iDummy = -1; eType = sqlite3FindInIndex( pParse, pX, ref iDummy ); iTab = pX.iTable; sqlite3VdbeAddOp2( v, OP_Rewind, iTab, 0 ); Debug.Assert( ( pLevel.plan.wsFlags & WHERE_IN_ABLE ) != 0 ); if ( pLevel.u._in.nIn == 0 ) { pLevel.addrNxt = sqlite3VdbeMakeLabel( v ); } pLevel.u._in.nIn++; if ( pLevel.u._in.aInLoop == null ) pLevel.u._in.aInLoop = new InLoop[pLevel.u._in.nIn]; else Array.Resize( ref pLevel.u._in.aInLoop, pLevel.u._in.nIn ); //sqlite3DbReallocOrFree(pParse.db, pLevel.u._in.aInLoop, // sizeof(pLevel.u._in.aInLoop[0])*pLevel.u._in.nIn); //pIn = pLevel.u._in.aInLoop; if ( pLevel.u._in.aInLoop != null )//(pIn ) { pLevel.u._in.aInLoop[pLevel.u._in.nIn - 1] = new InLoop(); pIn = pLevel.u._in.aInLoop[pLevel.u._in.nIn - 1];//pIn++ pIn.iCur = iTab; if ( eType == IN_INDEX_ROWID ) { pIn.addrInTop = sqlite3VdbeAddOp2( v, OP_Rowid, iTab, iReg ); } else { pIn.addrInTop = sqlite3VdbeAddOp3( v, OP_Column, iTab, 0, iReg ); } sqlite3VdbeAddOp1( v, OP_IsNull, iReg ); } else { pLevel.u._in.nIn = 0; } #endif } disableTerm( pLevel, pTerm ); return iReg; } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. ** ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 ** The index has as many as three equality constraints, but in this ** example, the third "c" value is an inequality. So only two ** constraints are coded. This routine will generate code to evaluate ** a==5 and b IN (1,2,3). The current values for a and b will be stored ** in consecutive registers and the index of the first register is returned. ** ** In the example above nEq==2. But this subroutine works for any value ** of nEq including 0. If nEq==null, this routine is nearly a no-op. ** The only thing it does is allocate the pLevel.iMem memory cell and ** compute the affinity string. ** ** This routine always allocates at least one memory cell and returns ** the index of that memory cell. The code that ** calls this routine will use that memory cell to store the termination ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. ** ** Before returning, *pzAff is set to point to a buffer containing a ** copy of the column affinity string of the index allocated using ** sqlite3DbMalloc(). Except, entries in the copy of the string associated ** with equality constraints that use NONE affinity are set to ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: ** ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; ** ** In the example above, the index on t1(a) has TEXT affinity. But since ** the right hand side of the equality constraint (t2.b) has NONE affinity, ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_NONE. */ static int codeAllEqualityTerms( Parse pParse, /* Parsing context */ WhereLevel pLevel, /* Which nested loop of the FROM we are coding */ WhereClause pWC, /* The WHERE clause */ Bitmask notReady, /* Which parts of FROM have not yet been coded */ int nExtraReg, /* Number of extra registers to allocate */ out StringBuilder pzAff /* OUT: Set to point to affinity string */ ) { int nEq = (int)pLevel.plan.nEq; /* The number of == or IN constraints to code */ Vdbe v = pParse.pVdbe; /* The vm under construction */ Index pIdx; /* The index being used for this loop */ int iCur = pLevel.iTabCur; /* The cursor of the table */ WhereTerm pTerm; /* A single constraint term */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ StringBuilder zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ Debug.Assert( ( pLevel.plan.wsFlags & WHERE_INDEXED ) != 0 ); pIdx = pLevel.plan.u.pIdx; /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse.nMem + 1; nReg = (int)( pLevel.plan.nEq + nExtraReg ); pParse.nMem += nReg; zAff = new StringBuilder( sqlite3IndexAffinityStr( v, pIdx ) );//sqlite3DbStrDup(pParse.db, sqlite3IndexAffinityStr(v, pIdx)); //if( null==zAff ){ // pParse.db.mallocFailed = 1; //} /* Evaluate the equality constraints */ Debug.Assert( pIdx.nColumn >= nEq ); for ( j = 0; j < nEq; j++ ) { int r1; int k = pIdx.aiColumn[j]; pTerm = findTerm( pWC, iCur, k, notReady, pLevel.plan.wsFlags, pIdx ); if ( NEVER( pTerm == null ) ) break; /* The following true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( ( pTerm.wtFlags & TERM_CODED ) != 0 ); testcase( pTerm.wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ r1 = codeEqualityTerm( pParse, pTerm, pLevel, regBase + j ); if ( r1 != regBase + j ) { if ( nReg == 1 ) { sqlite3ReleaseTempReg( pParse, regBase ); regBase = r1; } else { sqlite3VdbeAddOp2( v, OP_SCopy, r1, regBase + j ); } } testcase( pTerm.eOperator & WO_ISNULL ); testcase( pTerm.eOperator & WO_IN ); if ( ( pTerm.eOperator & ( WO_ISNULL | WO_IN ) ) == 0 ) { Expr pRight = pTerm.pExpr.pRight; sqlite3ExprCodeIsNullJump( v, pRight, regBase + j, pLevel.addrBrk ); if ( zAff.Length > 0 ) { if ( sqlite3CompareAffinity( pRight, zAff[j] ) == SQLITE_AFF_NONE ) { zAff[j] = SQLITE_AFF_NONE; } if ( ( sqlite3ExprNeedsNoAffinityChange( pRight, zAff[j] ) ) != 0 ) { zAff[j] = SQLITE_AFF_NONE; } } } } pzAff = zAff; return regBase; } #if !SQLITE_OMIT_EXPLAIN /* ** This routine is a helper for explainIndexRange() below ** ** pStr holds the text of an expression that we are building up one term ** at a time. This routine adds a new term to the end of the expression. ** Terms are separated by AND so add the "AND" text for second and subsequent ** terms only. */ static void explainAppendTerm( StrAccum pStr, /* The text expression being built */ int iTerm, /* Index of this term. First is zero */ string zColumn, /* Name of the column */ string zOp /* Name of the operator */ ) { if ( iTerm != 0 ) sqlite3StrAccumAppend( pStr, " AND ", 5 ); sqlite3StrAccumAppend( pStr, zColumn, -1 ); sqlite3StrAccumAppend( pStr, zOp, 1 ); sqlite3StrAccumAppend( pStr, "?", 1 ); } /* ** Argument pLevel describes a strategy for scanning table pTab. This ** function returns a pointer to a string buffer containing a description ** of the subset of table rows scanned by the strategy in the form of an ** SQL expression. Or, if all rows are scanned, NULL is returned. ** ** For example, if the query: ** ** SELECT * FROM t1 WHERE a=1 AND b>2; ** ** is run and there is an index on (a, b), then this function returns a ** string similar to: ** ** "a=? AND b>?" ** ** The returned pointer points to memory obtained from sqlite3DbMalloc(). ** It is the responsibility of the caller to free the buffer when it is ** no longer required. */ static string explainIndexRange( sqlite3 db, WhereLevel pLevel, Table pTab ) { WherePlan pPlan = pLevel.plan; Index pIndex = pPlan.u.pIdx; uint nEq = pPlan.nEq; int i, j; Column[] aCol = pTab.aCol; int[] aiColumn = pIndex.aiColumn; StrAccum txt = new StrAccum( 100 ); if ( nEq == 0 && ( pPlan.wsFlags & ( WHERE_BTM_LIMIT | WHERE_TOP_LIMIT ) ) == 0 ) { return null; } sqlite3StrAccumInit( txt, null, 0, SQLITE_MAX_LENGTH ); txt.db = db; sqlite3StrAccumAppend( txt, " (", 2 ); for ( i = 0; i < nEq; i++ ) { explainAppendTerm( txt, i, aCol[aiColumn[i]].zName, "=" ); } j = i; if ( ( pPlan.wsFlags & WHERE_BTM_LIMIT ) != 0 ) { explainAppendTerm( txt, i++, aCol[aiColumn[j]].zName, ">" ); } if ( ( pPlan.wsFlags & WHERE_TOP_LIMIT ) != 0 ) { explainAppendTerm( txt, i, aCol[aiColumn[j]].zName, "<" ); } sqlite3StrAccumAppend( txt, ")", 1 ); return sqlite3StrAccumFinish( txt ); } /* ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single ** record is added to the output to describe the table scan strategy in ** pLevel. */ static void explainOneScan( Parse pParse, /* Parse context */ SrcList pTabList, /* Table list this loop refers to */ WhereLevel pLevel, /* Scan to write OP_Explain opcode for */ int iLevel, /* Value for "level" column of output */ int iFrom, /* Value for "from" column of output */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ) { if ( pParse.explain == 2 ) { u32 flags = pLevel.plan.wsFlags; SrcList_item pItem = pTabList.a[pLevel.iFrom]; Vdbe v = pParse.pVdbe; /* VM being constructed */ sqlite3 db = pParse.db; /* Database handle */ StringBuilder zMsg = new StringBuilder( 1000 ); /* Text to add to EQP output */ sqlite3_int64 nRow; /* Expected number of rows visited by scan */ int iId = pParse.iSelectId; /* Select id (left-most output column) */ bool isSearch; /* True for a SEARCH. False for SCAN. */ if ( ( flags & WHERE_MULTI_OR ) != 0 || ( wctrlFlags & WHERE_ONETABLE_ONLY ) != 0 ) return; isSearch = ( pLevel.plan.nEq > 0 ) || ( flags & ( WHERE_BTM_LIMIT | WHERE_TOP_LIMIT ) ) != 0 || ( wctrlFlags & ( WHERE_ORDERBY_MIN | WHERE_ORDERBY_MAX ) ) != 0; zMsg.Append( sqlite3MPrintf( db, "%s", isSearch ? "SEARCH" : "SCAN" ) ); if ( pItem.pSelect != null ) { zMsg.Append( sqlite3MAppendf( db, null, " SUBQUERY %d", pItem.iSelectId ) ); } else { zMsg.Append( sqlite3MAppendf( db, null, " TABLE %s", pItem.zName ) ); } if ( pItem.zAlias != null ) { zMsg.Append( sqlite3MAppendf( db, null, " AS %s", pItem.zAlias ) ); } if ( ( flags & WHERE_INDEXED ) != 0 ) { string zWhere = explainIndexRange( db, pLevel, pItem.pTab ); zMsg.Append( sqlite3MAppendf( db, null, " USING %s%sINDEX%s%s%s", ( ( flags & WHERE_TEMP_INDEX ) != 0 ? "AUTOMATIC " : string.Empty ), ( ( flags & WHERE_IDX_ONLY ) != 0 ? "COVERING " : string.Empty ), ( ( flags & WHERE_TEMP_INDEX ) != 0 ? string.Empty : " " ), ( ( flags & WHERE_TEMP_INDEX ) != 0 ? string.Empty : pLevel.plan.u.pIdx.zName ), zWhere ?? string.Empty ) ); sqlite3DbFree( db, ref zWhere ); } else if ( ( flags & ( WHERE_ROWID_EQ | WHERE_ROWID_RANGE ) ) != 0 ) { zMsg.Append( " USING INTEGER PRIMARY KEY" ); if ( ( flags & WHERE_ROWID_EQ ) != 0 ) { zMsg.Append( " (rowid=?)" ); } else if ( ( flags & WHERE_BOTH_LIMIT ) == WHERE_BOTH_LIMIT ) { zMsg.Append( " (rowid>? AND rowid?)" ); } else if ( ( flags & WHERE_TOP_LIMIT ) != 0 ) { zMsg.Append( " (rowid 0 && ( pTabItem.jointype & JT_LEFT ) != 0 )// Check value of pTabItem[0].jointype { pLevel.iLeftJoin = ++pParse.nMem; sqlite3VdbeAddOp2( v, OP_Integer, 0, pLevel.iLeftJoin ); #if SQLITE_DEBUG VdbeComment( v, "init LEFT JOIN no-match flag" ); #endif } #if !SQLITE_OMIT_VIRTUALTABLE if ( ( pLevel.plan.wsFlags & WHERE_VIRTUALTABLE ) != 0 ) { /* Case 0: The table is a virtual-table. Use the VFilter and VNext ** to access the data. */ int iReg; /* P3 Value for OP_VFilter */ sqlite3_index_info pVtabIdx = pLevel.plan.u.pVtabIdx; int nConstraint = pVtabIdx.nConstraint; sqlite3_index_constraint_usage[] aUsage = pVtabIdx.aConstraintUsage; sqlite3_index_constraint[] aConstraint = pVtabIdx.aConstraint; sqlite3ExprCachePush( pParse ); iReg = sqlite3GetTempRange( pParse, nConstraint + 2 ); for ( j = 1; j <= nConstraint; j++ ) { for ( k = 0; k < nConstraint; k++ ) { if ( aUsage[k].argvIndex == j ) { int iTerm = aConstraint[k].iTermOffset; sqlite3ExprCode( pParse, pWC.a[iTerm].pExpr.pRight, iReg + j + 1 ); break; } } if ( k == nConstraint ) break; } sqlite3VdbeAddOp2( v, OP_Integer, pVtabIdx.idxNum, iReg ); sqlite3VdbeAddOp2( v, OP_Integer, j - 1, iReg + 1 ); sqlite3VdbeAddOp4( v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx.idxStr, pVtabIdx.needToFreeIdxStr != 0 ? P4_MPRINTF : P4_STATIC ); pVtabIdx.needToFreeIdxStr = 0; for ( j = 0; j < nConstraint; j++ ) { if ( aUsage[j].omit != false ) { int iTerm = aConstraint[j].iTermOffset; disableTerm( pLevel, pWC.a[iTerm] ); } } pLevel.op = OP_VNext; pLevel.p1 = iCur; pLevel.p2 = sqlite3VdbeCurrentAddr( v ); sqlite3ReleaseTempRange( pParse, iReg, nConstraint + 2 ); sqlite3ExprCachePop( pParse, 1 ); } else #endif //* SQLITE_OMIT_VIRTUALTABLE */ if ( ( pLevel.plan.wsFlags & WHERE_ROWID_EQ ) != 0 ) { /* Case 1: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ iReleaseReg = sqlite3GetTempReg( pParse ); pTerm = findTerm( pWC, iCur, -1, notReady, WO_EQ | WO_IN, null ); Debug.Assert( pTerm != null ); Debug.Assert( pTerm.pExpr != null ); Debug.Assert( pTerm.leftCursor == iCur ); Debug.Assert( omitTable == 0 ); testcase( pTerm.wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ iRowidReg = codeEqualityTerm( pParse, pTerm, pLevel, iReleaseReg ); addrNxt = pLevel.addrNxt; sqlite3VdbeAddOp2( v, OP_MustBeInt, iRowidReg, addrNxt ); sqlite3VdbeAddOp3( v, OP_NotExists, iCur, addrNxt, iRowidReg ); sqlite3ExprCacheStore( pParse, iCur, -1, iRowidReg ); #if SQLITE_DEBUG VdbeComment( v, "pk" ); #endif pLevel.op = OP_Noop; } else if ( ( pLevel.plan.wsFlags & WHERE_ROWID_RANGE ) != 0 ) { /* Case 2: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; int memEndValue = 0; WhereTerm pStart, pEnd; Debug.Assert( omitTable == 0 ); pStart = findTerm( pWC, iCur, -1, notReady, WO_GT | WO_GE, null ); pEnd = findTerm( pWC, iCur, -1, notReady, WO_LT | WO_LE, null ); if ( bRev != 0 ) { pTerm = pStart; pStart = pEnd; pEnd = pTerm; } if ( pStart != null ) { Expr pX; /* The expression that defines the start bound */ int r1, rTemp = 0; /* Registers for holding the start boundary */ /* The following constant maps TK_xx codes into corresponding ** seek opcodes. It depends on a particular ordering of TK_xx */ u8[] aMoveOp = new u8[]{ /* TK_GT */ OP_SeekGt, /* TK_LE */ OP_SeekLe, /* TK_LT */ OP_SeekLt, /* TK_GE */ OP_SeekGe }; Debug.Assert( TK_LE == TK_GT + 1 ); /* Make sure the ordering.. */ Debug.Assert( TK_LT == TK_GT + 2 ); /* ... of the TK_xx values... */ Debug.Assert( TK_GE == TK_GT + 3 ); /* ... is correcct. */ testcase( pStart.wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ pX = pStart.pExpr; Debug.Assert( pX != null ); Debug.Assert( pStart.leftCursor == iCur ); r1 = sqlite3ExprCodeTemp( pParse, pX.pRight, ref rTemp ); sqlite3VdbeAddOp3( v, aMoveOp[pX.op - TK_GT], iCur, addrBrk, r1 ); #if SQLITE_DEBUG VdbeComment( v, "pk" ); #endif sqlite3ExprCacheAffinityChange( pParse, r1, 1 ); sqlite3ReleaseTempReg( pParse, rTemp ); disableTerm( pLevel, pStart ); } else { sqlite3VdbeAddOp2( v, bRev != 0 ? OP_Last : OP_Rewind, iCur, addrBrk ); } if ( pEnd != null ) { Expr pX; pX = pEnd.pExpr; Debug.Assert( pX != null ); Debug.Assert( pEnd.leftCursor == iCur ); testcase( pEnd.wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ memEndValue = ++pParse.nMem; sqlite3ExprCode( pParse, pX.pRight, memEndValue ); if ( pX.op == TK_LT || pX.op == TK_GT ) { testOp = bRev != 0 ? OP_Le : OP_Ge; } else { testOp = bRev != 0 ? OP_Lt : OP_Gt; } disableTerm( pLevel, pEnd ); } start = sqlite3VdbeCurrentAddr( v ); pLevel.op = (u8)( bRev != 0 ? OP_Prev : OP_Next ); pLevel.p1 = iCur; pLevel.p2 = start; if ( pStart == null && pEnd == null ) { pLevel.p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } else { Debug.Assert( pLevel.p5 == 0 ); } if ( testOp != OP_Noop ) { iRowidReg = iReleaseReg = sqlite3GetTempReg( pParse ); sqlite3VdbeAddOp2( v, OP_Rowid, iCur, iRowidReg ); sqlite3ExprCacheStore( pParse, iCur, -1, iRowidReg ); sqlite3VdbeAddOp3( v, testOp, memEndValue, addrBrk, iRowidReg ); sqlite3VdbeChangeP5( v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL ); } } else if ( ( pLevel.plan.wsFlags & ( WHERE_COLUMN_RANGE | WHERE_COLUMN_EQ ) ) != 0 ) { /* Case 3: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N ** left-most columns of the index. It may also contain ** inequality constraints (>, <, >= or <=) on the indexed ** column that immediately follows the N equalities. Only ** the right-most column can be an inequality - the rest must ** use the "==" and "IN" operators. For example, if the ** index is on (x,y,z), then the following clauses are all ** optimized: ** ** x=5 ** x=5 AND y=10 ** x=5 AND y<10 ** x=5 AND y>5 AND y<10 ** x=5 AND y=5 AND z<=10 ** ** The z<10 term of the following cannot be used, only ** the x=5 term: ** ** x=5 AND z<10 ** ** N may be zero if there are inequality constraints. ** If there are no inequality constraints, then N is at ** least one. ** ** This case is also used when there are no WHERE clause ** constraints but an index is selected anyway, in order ** to force the output order to conform to an ORDER BY. */ u8[] aStartOp = new u8[] { 0, 0, OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ OP_Last, /* 3: (!start_constraints && startEq && bRev) */ OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ }; u8[] aEndOp = new u8[] { OP_Noop, /* 0: (!end_constraints) */ OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; int nEq = (int)pLevel.plan.nEq; /* Number of == or IN terms */ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ int regBase; /* Base register holding constraint values */ int r1; /* Temp register */ WhereTerm pRangeStart = null; /* Inequality constraint at range start */ WhereTerm pRangeEnd = null; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ StringBuilder zStartAff = new StringBuilder(); ;/* Affinity for start of range constraint */ StringBuilder zEndAff; /* Affinity for end of range constraint */ pIdx = pLevel.plan.u.pIdx; iIdxCur = pLevel.iIdxCur; k = pIdx.aiColumn[nEq]; /* Column for inequality constraints */ /* If this loop satisfies a sort order (pOrderBy) request that ** was pDebug.Assed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ if ( ( wctrlFlags & WHERE_ORDERBY_MIN ) != 0 && ( ( pLevel.plan.wsFlags & WHERE_ORDERBY ) != 0 ) && ( pIdx.nColumn > nEq ) ) { /* Debug.Assert( pOrderBy.nExpr==1 ); */ /* Debug.Assert( pOrderBy.a[0].pExpr.iColumn==pIdx.aiColumn[nEq] ); */ isMinQuery = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ if ( ( pLevel.plan.wsFlags & WHERE_TOP_LIMIT ) != 0 ) { pRangeEnd = findTerm( pWC, iCur, k, notReady, ( WO_LT | WO_LE ), pIdx ); nExtraReg = 1; } if ( ( pLevel.plan.wsFlags & WHERE_BTM_LIMIT ) != 0 ) { pRangeStart = findTerm( pWC, iCur, k, notReady, ( WO_GT | WO_GE ), pIdx ); nExtraReg = 1; } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms( pParse, pLevel, pWC, notReady, nExtraReg, out zStartAff ); zEndAff = new StringBuilder( zStartAff.ToString() );//sqlite3DbStrDup(pParse.db, zStartAff); addrNxt = pLevel.addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if ( nEq < pIdx.nColumn && bRev == ( pIdx.aSortOrder[nEq] == SQLITE_SO_ASC ? 1 : 0 ) ) { SWAP( ref pRangeEnd, ref pRangeStart ); } testcase( pRangeStart != null && ( pRangeStart.eOperator & WO_LE ) != 0 ); testcase( pRangeStart != null && ( pRangeStart.eOperator & WO_GE ) != 0 ); testcase( pRangeEnd != null && ( pRangeEnd.eOperator & WO_LE ) != 0 ); testcase( pRangeEnd != null && ( pRangeEnd.eOperator & WO_GE ) != 0 ); startEq = ( null == pRangeStart || ( pRangeStart.eOperator & ( WO_LE | WO_GE ) ) != 0 ) ? 1 : 0; endEq = ( null == pRangeEnd || ( pRangeEnd.eOperator & ( WO_LE | WO_GE ) ) != 0 ) ? 1 : 0; start_constraints = ( pRangeStart != null || nEq > 0 ) ? 1 : 0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if ( pRangeStart != null ) { Expr pRight = pRangeStart.pExpr.pRight; sqlite3ExprCode( pParse, pRight, regBase + nEq ); if ( ( pRangeStart.wtFlags & TERM_VNULL ) == 0 ) { sqlite3ExprCodeIsNullJump( v, pRight, regBase + nEq, addrNxt ); } if ( zStartAff.Length != 0 ) { if ( sqlite3CompareAffinity( pRight, zStartAff[nEq] ) == SQLITE_AFF_NONE ) { /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zStartAff[nEq] = SQLITE_AFF_NONE; } if ( ( sqlite3ExprNeedsNoAffinityChange( pRight, zStartAff[nEq] ) ) != 0 ) { zStartAff[nEq] = SQLITE_AFF_NONE; } } nConstraint++; testcase( pRangeStart.wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ } else if ( isMinQuery != 0 ) { sqlite3VdbeAddOp2( v, OP_Null, 0, regBase + nEq ); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity( pParse, regBase, nConstraint, zStartAff.ToString() ); op = aStartOp[( start_constraints << 2 ) + ( startEq << 1 ) + bRev]; Debug.Assert( op != 0 ); testcase( op == OP_Rewind ); testcase( op == OP_Last ); testcase( op == OP_SeekGt ); testcase( op == OP_SeekGe ); testcase( op == OP_SeekLe ); testcase( op == OP_SeekLt ); sqlite3VdbeAddOp4Int( v, op, iIdxCur, addrNxt, regBase, nConstraint ); /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if ( pRangeEnd != null ) { Expr pRight = pRangeEnd.pExpr.pRight; sqlite3ExprCacheRemove( pParse, regBase + nEq, 1 ); sqlite3ExprCode( pParse, pRight, regBase + nEq ); if ( ( pRangeEnd.wtFlags & TERM_VNULL ) == 0 ) { sqlite3ExprCodeIsNullJump( v, pRight, regBase + nEq, addrNxt ); } if ( zEndAff.Length > 0 ) { if ( sqlite3CompareAffinity( pRight, zEndAff[nEq] ) == SQLITE_AFF_NONE ) { /* Since the comparison is to be performed with no conversions ** applied to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zEndAff[nEq] = SQLITE_AFF_NONE; } if ( ( sqlite3ExprNeedsNoAffinityChange( pRight, zEndAff[nEq] ) ) != 0 ) { zEndAff[nEq] = SQLITE_AFF_NONE; } } codeApplyAffinity( pParse, regBase, nEq + 1, zEndAff.ToString() ); nConstraint++; testcase( pRangeEnd.wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ } sqlite3DbFree( pParse.db, ref zStartAff ); sqlite3DbFree( pParse.db, ref zEndAff ); /* Top of the loop body */ pLevel.p2 = sqlite3VdbeCurrentAddr( v ); /* Check if the index cursor is past the end of the range. */ op = aEndOp[( ( pRangeEnd != null || nEq != 0 ) ? 1 : 0 ) * ( 1 + bRev )]; testcase( op == OP_Noop ); testcase( op == OP_IdxGE ); testcase( op == OP_IdxLT ); if ( op != OP_Noop ) { sqlite3VdbeAddOp4Int( v, op, iIdxCur, addrNxt, regBase, nConstraint ); sqlite3VdbeChangeP5( v, (u8)( endEq != bRev ? 1 : 0 ) ); } /* If there are inequality constraints, check that the value ** of the table column that the inequality contrains is not NULL. ** If it is, jump to the next iteration of the loop. */ r1 = sqlite3GetTempReg( pParse ); testcase( pLevel.plan.wsFlags & WHERE_BTM_LIMIT ); testcase( pLevel.plan.wsFlags & WHERE_TOP_LIMIT ); if ( ( pLevel.plan.wsFlags & ( WHERE_BTM_LIMIT | WHERE_TOP_LIMIT ) ) != 0 ) { sqlite3VdbeAddOp3( v, OP_Column, iIdxCur, nEq, r1 ); sqlite3VdbeAddOp2( v, OP_IsNull, r1, addrCont ); } sqlite3ReleaseTempReg( pParse, r1 ); /* Seek the table cursor, if required */ disableTerm( pLevel, pRangeStart ); disableTerm( pLevel, pRangeEnd ); if ( 0 == omitTable ) { iRowidReg = iReleaseReg = sqlite3GetTempReg( pParse ); sqlite3VdbeAddOp2( v, OP_IdxRowid, iIdxCur, iRowidReg ); sqlite3ExprCacheStore( pParse, iCur, -1, iRowidReg ); sqlite3VdbeAddOp2( v, OP_Seek, iCur, iRowidReg ); /* Deferred seek */ } /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ if ( ( pLevel.plan.wsFlags & WHERE_UNIQUE ) != 0 ) { pLevel.op = OP_Noop; } else if ( bRev != 0 ) { pLevel.op = OP_Prev; } else { pLevel.op = OP_Next; } pLevel.p1 = iIdxCur; } else #if !SQLITE_OMIT_OR_OPTIMIZATION if ( ( pLevel.plan.wsFlags & WHERE_MULTI_OR ) != 0 ) { /* Case 4: Two or more separately indexed terms connected by OR ** ** Example: ** ** CREATE TABLE t1(a,b,c,d); ** CREATE INDEX i1 ON t1(a); ** CREATE INDEX i2 ON t1(b); ** CREATE INDEX i3 ON t1(c); ** ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) ** ** In the example, there are three indexed terms connected by OR. ** The top of the loop looks like this: ** ** Null 1 # Zero the rowset in reg 1 ** ** Then, for each indexed term, the following. The arguments to ** RowSetTest are such that the rowid of the current row is inserted ** into the RowSet. If it is already present, control skips the ** Gosub opcode and jumps straight to the code generated by WhereEnd(). ** ** sqlite3WhereBegin() ** RowSetTest # Insert rowid into rowset ** Gosub 2 A ** sqlite3WhereEnd() ** ** Following the above, code to terminate the loop. Label A, the target ** of the Gosub above, jumps to the instruction right after the Goto. ** ** Null 1 # Zero the rowset in reg 1 ** Goto B # The loop is finished. ** ** A: # Return data, whatever. ** ** Return 2 # Jump back to the Gosub ** ** B: ** */ WhereClause pOrWc; /* The OR-clause broken out into subterms */ SrcList pOrTab; /* Shortened table list or OR-clause generation */ int regReturn = ++pParse.nMem; /* Register used with OP_Gosub */ int regRowset = 0; /* Register for RowSet object */ int regRowid = 0; /* Register holding rowid */ int iLoopBody = sqlite3VdbeMakeLabel( v );/* Start of loop body */ int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; pTerm = pLevel.plan.u.pTerm; Debug.Assert( pTerm != null ); Debug.Assert( pTerm.eOperator == WO_OR ); Debug.Assert( ( pTerm.wtFlags & TERM_ORINFO ) != 0 ); pOrWc = pTerm.u.pOrInfo.wc; pLevel.op = OP_Return; pLevel.p1 = regReturn; /* Set up a new SrcList in pOrTab containing the table being scanned ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). */ if ( pWInfo.nLevel > 1 ) { int nNotReady; /* The number of notReady tables */ SrcList_item[] origSrc; /* Original list of tables */ nNotReady = pWInfo.nLevel - iLevel - 1; //sqlite3StackAllocRaw(pParse.db, //sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab.a[0])); pOrTab = new SrcList(); pOrTab.a = new SrcList_item[nNotReady + 1]; //if( pOrTab==0 ) return notReady; pOrTab.nAlloc = (i16)( nNotReady + 1 ); pOrTab.nSrc = pOrTab.nAlloc; pOrTab.a[0] = pTabItem;//memcpy(pOrTab.a, pTabItem, sizeof(*pTabItem)); origSrc = pWInfo.pTabList.a; for ( k = 1; k <= nNotReady; k++ ) { pOrTab.a[k] = origSrc[pWInfo.a[iLevel + k].iFrom];// memcpy(&pOrTab.a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab.a[k])); } } else { pOrTab = pWInfo.pTabList; } /* Initialize the rowset register to contain NULL. An SQL NULL is ** equivalent to an empty rowset. ** ** Also initialize regReturn to contain the address of the instruction ** immediately following the OP_Return at the bottom of the loop. This ** is required in a few obscure LEFT JOIN cases where control jumps ** over the top of the loop into the body of it. In this case the ** correct response for the end-of-loop code (the OP_Return) is to ** fall through to the next instruction, just as an OP_Next does if ** called on an uninitialized cursor. */ if ( ( wctrlFlags & WHERE_DUPLICATES_OK ) == 0 ) { regRowset = ++pParse.nMem; regRowid = ++pParse.nMem; sqlite3VdbeAddOp2( v, OP_Null, 0, regRowset ); } iRetInit = sqlite3VdbeAddOp2( v, OP_Integer, 0, regReturn ); for ( ii = 0; ii < pOrWc.nTerm; ii++ ) { WhereTerm pOrTerm = pOrWc.a[ii]; if ( pOrTerm.leftCursor == iCur || pOrTerm.eOperator == WO_AND ) { WhereInfo pSubWInfo; /* Info for single OR-term scan */ /* Loop through table entries that match term pOrTerm. */ ExprList elDummy = null; pSubWInfo = sqlite3WhereBegin( pParse, pOrTab, pOrTerm.pExpr, ref elDummy, WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY ); if ( pSubWInfo != null ) { explainOneScan( pParse, pOrTab, pSubWInfo.a[0], iLevel, pLevel.iFrom, 0 ); if ( ( wctrlFlags & WHERE_DUPLICATES_OK ) == 0 ) { int iSet = ( ( ii == pOrWc.nTerm - 1 ) ? -1 : ii ); int r; r = sqlite3ExprCodeGetColumn( pParse, pTabItem.pTab, -1, iCur, regRowid ); sqlite3VdbeAddOp4Int( v, OP_RowSetTest, regRowset, sqlite3VdbeCurrentAddr( v ) + 2, r, iSet ); } sqlite3VdbeAddOp2( v, OP_Gosub, regReturn, iLoopBody ); /* The pSubWInfo.untestedTerms flag means that this OR term ** contained one or more AND term from a notReady table. The ** terms from the notReady table could not be tested and will ** need to be tested later. */ if ( pSubWInfo.untestedTerms != 0 ) untestedTerms = 1; /* Finish the loop through table entries that match term pOrTerm. */ sqlite3WhereEnd( pSubWInfo ); } } } sqlite3VdbeChangeP1( v, iRetInit, sqlite3VdbeCurrentAddr( v ) ); sqlite3VdbeAddOp2( v, OP_Goto, 0, pLevel.addrBrk ); sqlite3VdbeResolveLabel( v, iLoopBody ); if ( pWInfo.nLevel > 1 ) sqlite3DbFree( pParse.db, ref pOrTab );//sqlite3DbFree(pParse.db, pOrTab) if ( 0 == untestedTerms ) disableTerm( pLevel, pTerm ); } else #endif //* SQLITE_OMIT_OR_OPTIMIZATION */ { /* Case 5: There is no usable index. We must do a complete ** scan of the entire table. */ u8[] aStep = new u8[] { OP_Next, OP_Prev }; u8[] aStart = new u8[] { OP_Rewind, OP_Last }; Debug.Assert( bRev == 0 || bRev == 1 ); Debug.Assert( omitTable == 0 ); pLevel.op = aStep[bRev]; pLevel.p1 = iCur; pLevel.p2 = 1 + sqlite3VdbeAddOp2( v, aStart[bRev], iCur, addrBrk ); pLevel.p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } notReady &= ~getMask( pWC.pMaskSet, iCur ); /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. ** ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through ** the use of indices become tests that are evaluated against each row of ** the relevant input tables. */ for ( j = pWC.nTerm; j > 0; j-- )//, pTerm++) { pTerm = pWC.a[pWC.nTerm - j]; Expr pE; testcase( pTerm.wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ testcase( pTerm.wtFlags & TERM_CODED ); if ( ( pTerm.wtFlags & ( TERM_VIRTUAL | TERM_CODED ) ) != 0 ) continue; if ( ( pTerm.prereqAll & notReady ) != 0 ) { testcase( pWInfo.untestedTerms == 0 && ( pWInfo.wctrlFlags & WHERE_ONETABLE_ONLY ) != 0 ); pWInfo.untestedTerms = 1; continue; } pE = pTerm.pExpr; Debug.Assert( pE != null ); if ( pLevel.iLeftJoin != 0 && !( ( pE.flags & EP_FromJoin ) == EP_FromJoin ) )// !ExprHasProperty(pE, EP_FromJoin) ){ { continue; } sqlite3ExprIfFalse( pParse, pE, addrCont, SQLITE_JUMPIFNULL ); pTerm.wtFlags |= TERM_CODED; } /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if ( pLevel.iLeftJoin != 0 ) { pLevel.addrFirst = sqlite3VdbeCurrentAddr( v ); sqlite3VdbeAddOp2( v, OP_Integer, 1, pLevel.iLeftJoin ); #if SQLITE_DEBUG VdbeComment( v, "record LEFT JOIN hit" ); #endif sqlite3ExprCacheClear( pParse ); for ( j = 0; j < pWC.nTerm; j++ )//, pTerm++) { pTerm = pWC.a[j]; testcase( pTerm.wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ testcase( pTerm.wtFlags & TERM_CODED ); if ( ( pTerm.wtFlags & ( TERM_VIRTUAL | TERM_CODED ) ) != 0 ) continue; if ( ( pTerm.prereqAll & notReady ) != 0 ) { Debug.Assert( pWInfo.untestedTerms != 0 ); continue; } Debug.Assert( pTerm.pExpr != null ); sqlite3ExprIfFalse( pParse, pTerm.pExpr, addrCont, SQLITE_JUMPIFNULL ); pTerm.wtFlags |= TERM_CODED; } } sqlite3ReleaseTempReg( pParse, iReleaseReg ); return notReady; } #if (SQLITE_TEST) /* ** The following variable holds a text description of query plan generated ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin ** overwrites the previous. This information is used for testing and ** analysis only. */ #if !TCLSH //char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ static StringBuilder sqlite3_query_plan; #else static tcl.lang.Var.SQLITE3_GETSET sqlite3_query_plan = new tcl.lang.Var.SQLITE3_GETSET( "sqlite3_query_plan" ); #endif static int nQPlan = 0; /* Next free slow in _query_plan[] */ #endif //* SQLITE_TEST */ /* ** Free a WhereInfo structure */ static void whereInfoFree( sqlite3 db, WhereInfo pWInfo ) { if ( ALWAYS( pWInfo != null ) ) { int i; for ( i = 0; i < pWInfo.nLevel; i++ ) { sqlite3_index_info pInfo = pWInfo.a[i] != null ? pWInfo.a[i].pIdxInfo : null; if ( pInfo != null ) { /* Debug.Assert( pInfo.needToFreeIdxStr==0 || db.mallocFailed ); */ if ( pInfo.needToFreeIdxStr != 0 ) { //sqlite3_free( ref pInfo.idxStr ); } sqlite3DbFree( db, ref pInfo ); } if ( pWInfo.a[i] != null && ( pWInfo.a[i].plan.wsFlags & WHERE_TEMP_INDEX ) != 0 ) { Index pIdx = pWInfo.a[i].plan.u.pIdx; if ( pIdx != null ) { sqlite3DbFree( db, ref pIdx.zColAff ); sqlite3DbFree( db, ref pIdx ); } } } whereClauseClear( pWInfo.pWC ); sqlite3DbFree( db, ref pWInfo ); } } /* ** Generate the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an opaque structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqlite3WhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. ** ** If an error occurs, this routine returns NULL. ** ** The basic idea is to do a nested loop, one loop for each table in ** the FROM clause of a select. (INSERT and UPDATE statements are the ** same as a SELECT with only a single table in the FROM clause.) For ** example, if the SQL is this: ** ** SELECT * FROM t1, t2, t3 WHERE ...; ** ** Then the code generated is conceptually like the following: ** ** foreach row1 in t1 do \ Code generated ** foreach row2 in t2 do |-- by sqlite3WhereBegin() ** foreach row3 in t3 do / ** ... ** end \ Code generated ** end |-- by sqlite3WhereEnd() ** end / ** ** Note that the loops might not be nested in the order in which they ** appear in the FROM clause if a different order is better able to make ** use of indices. Note also that when the IN operator appears in ** the WHERE clause, it might result in additional nested loops for ** scanning through all values on the right-hand side of the IN. ** ** There are Btree cursors Debug.Associated with each table. t1 uses cursor ** number pTabList.a[0].iCursor. t2 uses the cursor pTabList.a[1].iCursor. ** And so forth. This routine generates code to open those VDBE cursors ** and sqlite3WhereEnd() generates the code to close them. ** ** The code that sqlite3WhereBegin() generates leaves the cursors named ** in pTabList pointing at their appropriate entries. The [...] code ** can use OP_Column and OP_Rowid opcodes on these cursors to extract ** data from the various tables of the loop. ** ** If the WHERE clause is empty, the foreach loops must each scan their ** entire tables. Thus a three-way join is an O(N^3) operation. But if ** the tables have indices and there are terms in the WHERE clause that ** refer to those indices, a complete table scan can be avoided and the ** code will run much faster. Most of the work of this routine is checking ** to see if there are indices that can be used to speed up the loop. ** ** Terms of the WHERE clause are also used to limit which rows actually ** make it to the "..." in the middle of the loop. After each "foreach", ** terms of the WHERE clause that use only terms in that loop and outer ** loops are evaluated and if false a jump is made around all subsequent ** inner loops (or around the "..." if the test occurs within the inner- ** most loop) ** ** OUTER JOINS ** ** An outer join of tables t1 and t2 is conceptally coded as follows: ** ** foreach row1 in t1 do ** flag = 0 ** foreach row2 in t2 do ** start: ** ... ** flag = 1 ** end ** if flag==null then ** move the row2 cursor to a null row ** goto start ** fi ** end ** ** ORDER BY CLAUSE PROCESSING ** ** ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, ** if there is one. If there is no ORDER BY clause or if this routine ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. ** ** If an index can be used so that the natural output order of the table ** scan is correct for the ORDER BY clause, then that index is used and ** ppOrderBy is set to NULL. This is an optimization that prevents an ** unnecessary sort of the result set if an index appropriate for the ** ORDER BY clause already exists. ** ** If the where clause loops cannot be arranged to provide the correct ** output order, then the ppOrderBy is unchanged. */ static WhereInfo sqlite3WhereBegin( Parse pParse, /* The parser context */ SrcList pTabList, /* A list of all tables to be scanned */ Expr pWhere, /* The WHERE clause */ ref ExprList ppOrderBy, /* An ORDER BY clause, or NULL */ u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ ) { int i; /* Loop counter */ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ int nTabList; /* Number of elements in pTabList */ WhereInfo pWInfo; /* Will become the return value of this function */ Vdbe v = pParse.pVdbe; /* The virtual data_base engine */ Bitmask notReady; /* Cursors that are not yet positioned */ WhereMaskSet pMaskSet; /* The expression mask set */ WhereClause pWC = new WhereClause(); /* Decomposition of the WHERE clause */ SrcList_item pTabItem; /* A single entry from pTabList */ WhereLevel pLevel; /* A single level in the pWInfo list */ int iFrom; /* First unused FROM clause element */ int andFlags; /* AND-ed combination of all pWC.a[].wtFlags */ sqlite3 db; /* Data_base connection */ /* The number of tables in the FROM clause is limited by the number of ** bits in a Bitmask */ testcase( pTabList.nSrc == BMS ); if ( pTabList.nSrc > BMS ) { sqlite3ErrorMsg( pParse, "at most %d tables in a join", BMS ); return null; } /* This function normally generates a nested loop for all tables in ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should ** only generate code for the first table in pTabList and assume that ** any cursors associated with subsequent tables are uninitialized. */ nTabList = ( ( wctrlFlags & WHERE_ONETABLE_ONLY ) != 0 ) ? 1 : (int)pTabList.nSrc; /* Allocate and initialize the WhereInfo structure that will become the ** return value. A single allocation is used to store the WhereInfo ** struct, the contents of WhereInfo.a[], the WhereClause structure ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte ** field (type Bitmask) it must be aligned on an 8-byte boundary on ** some architectures. Hence the ROUND8() below. */ db = pParse.db; pWInfo = new WhereInfo(); //nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); //pWInfo = sqlite3DbMallocZero( db, // nByteWInfo + // sizeof( WhereClause ) + // sizeof( WhereMaskSet ) //); pWInfo.a = new WhereLevel[pTabList.nSrc]; for ( int ai = 0; ai < pWInfo.a.Length; ai++ ) { pWInfo.a[ai] = new WhereLevel(); } //if ( db.mallocFailed != 0 ) //{ //sqlite3DbFree(db, pWInfo); //pWInfo = 0; // goto whereBeginError; //} pWInfo.nLevel = nTabList; pWInfo.pParse = pParse; pWInfo.pTabList = pTabList; pWInfo.iBreak = sqlite3VdbeMakeLabel( v ); pWInfo.pWC = pWC = new WhereClause();// (WhereClause )((u8 )pWInfo)[nByteWInfo]; pWInfo.wctrlFlags = wctrlFlags; pWInfo.savedNQueryLoop = pParse.nQueryLoop; //pMaskSet = (WhereMaskSet)pWC[1]; /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ pMaskSet = new WhereMaskSet();//initMaskSet(pMaskSet); whereClauseInit( pWC, pParse, pMaskSet ); sqlite3ExprCodeConstants( pParse, pWhere ); whereSplit( pWC, pWhere, TK_AND ); /* IMP: R-15842-53296 */ /* Special case: a WHERE clause that is constant. Evaluate the ** expression and either jump over all of the code or fall thru. */ if ( pWhere != null && ( nTabList == 0 || sqlite3ExprIsConstantNotJoin( pWhere ) != 0 ) ) { sqlite3ExprIfFalse( pParse, pWhere, pWInfo.iBreak, SQLITE_JUMPIFNULL ); pWhere = null; } /* Assign a bit from the bitmask to every term in the FROM clause. ** ** When assigning bitmask values to FROM clause cursors, it must be ** the case that if X is the bitmask for the N-th FROM clause term then ** the bitmask for all FROM clause terms to the left of the N-th term ** is (X-1). An expression from the ON clause of a LEFT JOIN can use ** its Expr.iRightJoinTable value to find the bitmask of the right table ** of the join. Subtracting one from the right table bitmask gives a ** bitmask for all tables to the left of the join. Knowing the bitmask ** for all tables to the left of a left join is important. Ticket #3015. ** ** Configure the WhereClause.vmask variable so that bits that correspond ** to virtual table cursors are set. This is used to selectively disable ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful ** with virtual tables. ** ** Note that bitmasks are created for all pTabList.nSrc tables in ** pTabList, not just the first nTabList tables. nTabList is normally ** equal to pTabList.nSrc but might be shortened to 1 if the ** WHERE_ONETABLE_ONLY flag is set. */ Debug.Assert( pWC.vmask == 0 && pMaskSet.n == 0 ); for ( i = 0; i < pTabList.nSrc; i++ ) { createMask( pMaskSet, pTabList.a[i].iCursor ); #if !SQLITE_OMIT_VIRTUALTABLE if ( ALWAYS( pTabList.a[i].pTab ) && IsVirtual( pTabList.a[i].pTab ) ) { pWC.vmask |= ( (Bitmask)1 << i ); } #endif } #if !NDEBUG { Bitmask toTheLeft = 0; for ( i = 0; i < pTabList.nSrc; i++ ) { Bitmask m = getMask( pMaskSet, pTabList.a[i].iCursor ); Debug.Assert( ( m - 1 ) == toTheLeft ); toTheLeft |= m; } } #endif /* Analyze all of the subexpressions. Note that exprAnalyze() might ** add new virtual terms onto the end of the WHERE clause. We do not ** want to analyze these virtual terms, so start analyzing at the end ** and work forward so that the added virtual terms are never processed. */ exprAnalyzeAll( pTabList, pWC ); //if ( db.mallocFailed != 0 ) //{ // goto whereBeginError; //} /* Chose the best index to use for each table in the FROM clause. ** ** This loop fills in the following fields: ** ** pWInfo.a[].pIdx The index to use for this level of the loop. ** pWInfo.a[].wsFlags WHERE_xxx flags Debug.Associated with pIdx ** pWInfo.a[].nEq The number of == and IN constraints ** pWInfo.a[].iFrom Which term of the FROM clause is being coded ** pWInfo.a[].iTabCur The VDBE cursor for the data_base table ** pWInfo.a[].iIdxCur The VDBE cursor for the index ** pWInfo.a[].pTerm When wsFlags==WO_OR, the OR-clause term ** ** This loop also figures out the nesting order of tables in the FROM ** clause. */ notReady = ~(Bitmask)0; andFlags = ~0; #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "*** Optimizer Start ***\n" ); #endif for ( i = iFrom = 0; i < nTabList; i++ )//, pLevel++ ) { pLevel = pWInfo.a[i]; WhereCost bestPlan; /* Most efficient plan seen so far */ Index pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ int bestJ = -1; /* The value of j */ Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ int nUnconstrained; /* Number tables without INDEXED BY */ Bitmask notIndexed; /* Mask of tables that cannot use an index */ bestPlan = new WhereCost();// memset( &bestPlan, 0, sizeof( bestPlan ) ); bestPlan.rCost = SQLITE_BIG_DBL; #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "*** Begin search for loop %d ***\n", i ); #endif /* Loop through the remaining entries in the FROM clause to find the ** next nested loop. The loop tests all FROM clause entries ** either once or twice. ** ** The first test is always performed if there are two or more entries ** remaining and never performed if there is only one FROM clause entry ** to choose from. The first test looks for an "optimal" scan. In ** this context an optimal scan is one that uses the same strategy ** for the given FROM clause entry as would be selected if the entry ** were used as the innermost nested loop. In other words, a table ** is chosen such that the cost of running that table cannot be reduced ** by waiting for other tables to run first. This "optimal" test works ** by first assuming that the FROM clause is on the inner loop and finding ** its query plan, then checking to see if that query plan uses any ** other FROM clause terms that are notReady. If no notReady terms are ** used then the "optimal" query plan works. ** ** Note that the WhereCost.nRow parameter for an optimal scan might ** not be as small as it would be if the table really were the innermost ** join. The nRow value can be reduced by WHERE clause constraints ** that do not use indices. But this nRow reduction only happens if the ** table really is the innermost join. ** ** The second loop iteration is only performed if no optimal scan ** strategies were found by the first iteration. This second iteration ** is used to search for the lowest cost scan overall. ** ** Previous versions of SQLite performed only the second iteration - ** the next outermost loop was always that with the lowest overall ** cost. However, this meant that SQLite could select the wrong plan ** for scripts such as the following: ** ** CREATE TABLE t1(a, b); ** CREATE TABLE t2(c, d); ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; ** ** The best strategy is to iterate through table t1 first. However it ** is not possible to determine this with a simple greedy algorithm. ** Since the cost of a linear scan through table t2 is the same ** as the cost of a linear scan through table t1, a simple greedy ** algorithm may choose to use t2 for the outer loop, which is a much ** costlier approach. */ nUnconstrained = 0; notIndexed = 0; for ( isOptimal = ( iFrom < nTabList - 1 ) ? 1 : 0; isOptimal >= 0 && bestJ < 0; isOptimal-- ) { Bitmask mask; /* Mask of tables not yet ready */ for ( j = iFrom; j < nTabList; j++ )//, pTabItem++) { pTabItem = pTabList.a[j]; int doNotReorder; /* True if this table should not be reordered */ WhereCost sCost = new WhereCost(); /* Cost information from best[Virtual]Index() */ ExprList pOrderBy; /* ORDER BY clause for index to optimize */ doNotReorder = ( pTabItem.jointype & ( JT_LEFT | JT_CROSS ) ) != 0 ? 1 : 0; if ( ( j != iFrom && doNotReorder != 0 ) ) break; m = getMask( pMaskSet, pTabItem.iCursor ); if ( ( m & notReady ) == 0 ) { if ( j == iFrom ) iFrom++; continue; } mask = ( isOptimal != 0 ? m : notReady ); pOrderBy = ( ( i == 0 && ppOrderBy != null ) ? ppOrderBy : null ); if ( pTabItem.pIndex == null ) nUnconstrained++; #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "=== trying table %d with isOptimal=%d ===\n", j, isOptimal ); #endif Debug.Assert( pTabItem.pTab != null ); #if !SQLITE_OMIT_VIRTUALTABLE if ( IsVirtual( pTabItem.pTab ) ) { sqlite3_index_info pp = pWInfo.a[j].pIdxInfo; bestVirtualIndex( pParse, pWC, pTabItem, mask, notReady, pOrderBy, ref sCost, ref pp ); } else #endif { bestBtreeIndex( pParse, pWC, pTabItem, mask, notReady, pOrderBy, ref sCost ); } Debug.Assert( isOptimal != 0 || ( sCost.used & notReady ) == 0 ); /* If an INDEXED BY clause is present, then the plan must use that ** index if it uses any index at all */ Debug.Assert( pTabItem.pIndex == null || ( sCost.plan.wsFlags & WHERE_NOT_FULLSCAN ) == 0 || sCost.plan.u.pIdx == pTabItem.pIndex ); if ( isOptimal != 0 && ( sCost.plan.wsFlags & WHERE_NOT_FULLSCAN ) == 0 ) { notIndexed |= m; } /* Conditions under which this table becomes the best so far: ** ** (1) The table must not depend on other tables that have not ** yet run. ** ** (2) A full-table-scan plan cannot supercede indexed plan unless ** the full-table-scan is an "optimal" plan as defined above. ** ** (3) All tables have an INDEXED BY clause or this table lacks an ** INDEXED BY clause or this table uses the specific ** index specified by its INDEXED BY clause. This rule ensures ** that a best-so-far is always selected even if an impossible ** combination of INDEXED BY clauses are given. The error ** will be detected and relayed back to the application later. ** The NEVER() comes about because rule (2) above prevents ** An indexable full-table-scan from reaching rule (3). ** ** (4) The plan cost must be lower than prior plans or else the ** cost must be the same and the number of rows must be lower. */ if ( ( sCost.used & notReady ) == 0 /* (1) */ && ( bestJ < 0 || ( notIndexed & m ) != 0 /* (2) */ || ( bestPlan.plan.wsFlags & WHERE_NOT_FULLSCAN ) == 0 || ( sCost.plan.wsFlags & WHERE_NOT_FULLSCAN ) != 0 ) && ( nUnconstrained == 0 || pTabItem.pIndex == null /* (3) */ || NEVER( ( sCost.plan.wsFlags & WHERE_NOT_FULLSCAN ) != 0 ) ) && ( bestJ < 0 || sCost.rCost < bestPlan.rCost /* (4) */ || ( sCost.rCost <= bestPlan.rCost && sCost.plan.nRow < bestPlan.plan.nRow ) ) ) { #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "=== table %d is best so far" + " with cost=%g and nRow=%g\n", j, sCost.rCost, sCost.plan.nRow ); #endif bestPlan = sCost; bestJ = j; } if ( doNotReorder != 0 ) break; } } Debug.Assert( bestJ >= 0 ); Debug.Assert( ( notReady & getMask( pMaskSet, pTabList.a[bestJ].iCursor ) ) != 0 ); #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "*** Optimizer selects table %d for loop %d" + " with cost=%g and nRow=%g\n", bestJ, i,//pLevel-pWInfo.a, bestPlan.rCost, bestPlan.plan.nRow ); #endif if ( ( bestPlan.plan.wsFlags & WHERE_ORDERBY ) != 0 ) { ppOrderBy = null; } andFlags = (int)( andFlags & bestPlan.plan.wsFlags ); pLevel.plan = bestPlan.plan; testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); if ( ( bestPlan.plan.wsFlags & ( WHERE_INDEXED | WHERE_TEMP_INDEX ) ) != 0 ) { pLevel.iIdxCur = pParse.nTab++; } else { pLevel.iIdxCur = -1; } notReady &= ~getMask( pMaskSet, pTabList.a[bestJ].iCursor ); pLevel.iFrom = (u8)bestJ; if ( bestPlan.plan.nRow >= (double)1 ) { pParse.nQueryLoop *= bestPlan.plan.nRow; } /* Check that if the table scanned by this loop iteration had an ** INDEXED BY clause attached to it, that the named index is being ** used for the scan. If not, then query compilation has failed. ** Return an error. */ pIdx = pTabList.a[bestJ].pIndex; if ( pIdx != null ) { if ( ( bestPlan.plan.wsFlags & WHERE_INDEXED ) == 0 ) { sqlite3ErrorMsg( pParse, "cannot use index: %s", pIdx.zName ); goto whereBeginError; } else { /* If an INDEXED BY clause is used, the bestIndex() function is ** guaranteed to find the index specified in the INDEXED BY clause ** if it find an index at all. */ Debug.Assert( bestPlan.plan.u.pIdx == pIdx ); } } } #if (SQLITE_TEST) && (SQLITE_DEBUG) WHERETRACE( "*** Optimizer Finished ***\n" ); #endif if ( pParse.nErr != 0 /*|| db.mallocFailed != 0 */ ) { goto whereBeginError; } /* If the total query only selects a single row, then the ORDER BY ** clause is irrelevant. */ if ( ( andFlags & WHERE_UNIQUE ) != 0 && ppOrderBy != null ) { ppOrderBy = null; } /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pDebug.Ass algorithm, determine if this is appropriate. ** The one-pass algorithm only works if the WHERE clause constraints ** the statement to update a single row. */ Debug.Assert( ( wctrlFlags & WHERE_ONEPASS_DESIRED ) == 0 || pWInfo.nLevel == 1 ); if ( ( wctrlFlags & WHERE_ONEPASS_DESIRED ) != 0 && ( andFlags & WHERE_UNIQUE ) != 0 ) { pWInfo.okOnePass = 1; pWInfo.a[0].plan.wsFlags = (u32)( pWInfo.a[0].plan.wsFlags & ~WHERE_IDX_ONLY ); } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ sqlite3CodeVerifySchema( pParse, -1 ); /* Insert the cookie verifier Goto */ notReady = ~(Bitmask)0; pWInfo.nRowOut = (double)1; for ( i = 0; i < nTabList; i++ )//, pLevel++ ) { pLevel = pWInfo.a[i]; Table pTab; /* Table to open */ int iDb; /* Index of data_base containing table/index */ pTabItem = pTabList.a[pLevel.iFrom]; pTab = pTabItem.pTab; pLevel.iTabCur = pTabItem.iCursor; pWInfo.nRowOut *= pLevel.plan.nRow; iDb = sqlite3SchemaToIndex( db, pTab.pSchema ); if ( ( pTab.tabFlags & TF_Ephemeral ) != 0 || pTab.pSelect != null ) { /* Do nothing */ } else #if !SQLITE_OMIT_VIRTUALTABLE if ( ( pLevel.plan.wsFlags & WHERE_VIRTUALTABLE ) != 0 ) { VTable pVTab = sqlite3GetVTable( db, pTab ); int iCur = pTabItem.iCursor; sqlite3VdbeAddOp4( v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB ); } else #endif if ( ( pLevel.plan.wsFlags & WHERE_IDX_ONLY ) == 0 && ( wctrlFlags & WHERE_OMIT_OPEN ) == 0 ) { int op = pWInfo.okOnePass != 0 ? OP_OpenWrite : OP_OpenRead; sqlite3OpenTable( pParse, pTabItem.iCursor, iDb, pTab, op ); testcase( pTab.nCol == BMS - 1 ); testcase( pTab.nCol == BMS ); if ( 0 == pWInfo.okOnePass && pTab.nCol < BMS ) { Bitmask b = pTabItem.colUsed; int n = 0; for ( ; b != 0; b = b >> 1, n++ ) { } sqlite3VdbeChangeP4( v, sqlite3VdbeCurrentAddr( v ) - 1, n, P4_INT32 );//SQLITE_INT_TO_PTR(n) Debug.Assert( n <= pTab.nCol ); } } else { sqlite3TableLock( pParse, iDb, pTab.tnum, 0, pTab.zName ); } #if !SQLITE_OMIT_AUTOMATIC_INDEX if ( ( pLevel.plan.wsFlags & WHERE_TEMP_INDEX ) != 0 ) { constructAutomaticIndex( pParse, pWC, pTabItem, notReady, pLevel ); } else #endif if ( ( pLevel.plan.wsFlags & WHERE_INDEXED ) != 0 ) { Index pIx = pLevel.plan.u.pIdx; KeyInfo pKey = sqlite3IndexKeyinfo( pParse, pIx ); int iIdxCur = pLevel.iIdxCur; Debug.Assert( pIx.pSchema == pTab.pSchema ); Debug.Assert( iIdxCur >= 0 ); sqlite3VdbeAddOp4( v, OP_OpenRead, iIdxCur, pIx.tnum, iDb, pKey, P4_KEYINFO_HANDOFF ); #if SQLITE_DEBUG VdbeComment( v, "%s", pIx.zName ); #endif } sqlite3CodeVerifySchema( pParse, iDb ); notReady &= ~getMask( pWC.pMaskSet, pTabItem.iCursor ); } pWInfo.iTop = sqlite3VdbeCurrentAddr( v ); //if( db.mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ notReady = ~(Bitmask)0; for ( i = 0; i < nTabList; i++ ) { pLevel = pWInfo.a[i]; explainOneScan( pParse, pTabList, pLevel, i, pLevel.iFrom, wctrlFlags ); notReady = codeOneLoopStart( pWInfo, i, wctrlFlags, notReady ); pWInfo.iContinue = pLevel.addrCont; } #if SQLITE_TEST //* For testing and debugging use only */ /* Record in the query plan information about the current table ** and the index used to access it (if any). If the table itself ** is not used, its name is just '{}'. If no index is used ** the index is listed as "{}". If the primary key is used the ** index name is '*'. */ #if !TCLSH sqlite3_query_plan.Length = 0; #else sqlite3_query_plan.sValue = string.Empty; #endif for ( i = 0; i < nTabList; i++ ) { string z; int n; pLevel = pWInfo.a[i]; pTabItem = pTabList.a[pLevel.iFrom]; z = pTabItem.zAlias; if ( z == null ) z = pTabItem.pTab.zName; n = sqlite3Strlen30( z ); if ( true ) //n+nQPlan < sizeof(sqlite3_query_plan)-10 ) { if ( ( pLevel.plan.wsFlags & WHERE_IDX_ONLY ) != 0 ) { sqlite3_query_plan.Append( "{}" ); //memcpy( &sqlite3_query_plan[nQPlan], "{}", 2 ); nQPlan += 2; } else { sqlite3_query_plan.Append( z ); //memcpy( &sqlite3_query_plan[nQPlan], z, n ); nQPlan += n; } sqlite3_query_plan.Append( " " ); nQPlan++; //sqlite3_query_plan[nQPlan++] = ' '; } testcase( pLevel.plan.wsFlags & WHERE_ROWID_EQ ); testcase( pLevel.plan.wsFlags & WHERE_ROWID_RANGE ); if ( ( pLevel.plan.wsFlags & ( WHERE_ROWID_EQ | WHERE_ROWID_RANGE ) ) != 0 ) { sqlite3_query_plan.Append( "* " ); //memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); nQPlan += 2; } else if ( ( pLevel.plan.wsFlags & WHERE_INDEXED ) != 0 ) { n = sqlite3Strlen30( pLevel.plan.u.pIdx.zName ); if ( true ) //n+nQPlan < sizeof(sqlite3_query_plan)-2 )//if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ) { sqlite3_query_plan.Append( pLevel.plan.u.pIdx.zName ); //memcpy(&sqlite3_query_plan[nQPlan], pLevel.plan.u.pIdx.zName, n); nQPlan += n; sqlite3_query_plan.Append( " " ); //sqlite3_query_plan[nQPlan++] = ' '; } } else { sqlite3_query_plan.Append( "{} " ); //memcpy( &sqlite3_query_plan[nQPlan], "{} ", 3 ); nQPlan += 3; } } //while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ // sqlite3_query_plan[--nQPlan] = 0; //} //sqlite3_query_plan[nQPlan] = 0; #if !TCLSH sqlite3_query_plan = new StringBuilder( sqlite3_query_plan.ToString().Trim() ); #else sqlite3_query_plan.Trim(); #endif nQPlan = 0; #endif //* SQLITE_TEST // Testing and debugging use only */ /* Record the continuation address in the WhereInfo structure. Then ** clean up and return. */ return pWInfo; /* Jump here if malloc fails */ whereBeginError: if ( pWInfo != null ) { pParse.nQueryLoop = pWInfo.savedNQueryLoop; whereInfoFree( db, pWInfo ); } return null; } /* ** Generate the end of the WHERE loop. See comments on ** sqlite3WhereBegin() for additional information. */ static void sqlite3WhereEnd( WhereInfo pWInfo ) { Parse pParse = pWInfo.pParse; Vdbe v = pParse.pVdbe; int i; WhereLevel pLevel; SrcList pTabList = pWInfo.pTabList; sqlite3 db = pParse.db; /* Generate loop termination code. */ sqlite3ExprCacheClear( pParse ); for ( i = pWInfo.nLevel - 1; i >= 0; i-- ) { pLevel = pWInfo.a[i]; sqlite3VdbeResolveLabel( v, pLevel.addrCont ); if ( pLevel.op != OP_Noop ) { sqlite3VdbeAddOp2( v, pLevel.op, pLevel.p1, pLevel.p2 ); sqlite3VdbeChangeP5( v, pLevel.p5 ); } if ( ( pLevel.plan.wsFlags & WHERE_IN_ABLE ) != 0 && pLevel.u._in.nIn > 0 ) { InLoop pIn; int j; sqlite3VdbeResolveLabel( v, pLevel.addrNxt ); for ( j = pLevel.u._in.nIn; j > 0; j-- )//, pIn--) { pIn = pLevel.u._in.aInLoop[j - 1]; sqlite3VdbeJumpHere( v, pIn.addrInTop + 1 ); sqlite3VdbeAddOp2( v, OP_Next, pIn.iCur, pIn.addrInTop ); sqlite3VdbeJumpHere( v, pIn.addrInTop - 1 ); } sqlite3DbFree( db, ref pLevel.u._in.aInLoop ); } sqlite3VdbeResolveLabel( v, pLevel.addrBrk ); if ( pLevel.iLeftJoin != 0 ) { int addr; addr = sqlite3VdbeAddOp1( v, OP_IfPos, pLevel.iLeftJoin ); Debug.Assert( ( pLevel.plan.wsFlags & WHERE_IDX_ONLY ) == 0 || ( pLevel.plan.wsFlags & WHERE_INDEXED ) != 0 ); if ( ( pLevel.plan.wsFlags & WHERE_IDX_ONLY ) == 0 ) { sqlite3VdbeAddOp1( v, OP_NullRow, pTabList.a[i].iCursor ); } if ( pLevel.iIdxCur >= 0 ) { sqlite3VdbeAddOp1( v, OP_NullRow, pLevel.iIdxCur ); } if ( pLevel.op == OP_Return ) { sqlite3VdbeAddOp2( v, OP_Gosub, pLevel.p1, pLevel.addrFirst ); } else { sqlite3VdbeAddOp2( v, OP_Goto, 0, pLevel.addrFirst ); } sqlite3VdbeJumpHere( v, addr ); } } /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel( v, pWInfo.iBreak ); /* Close all of the cursors that were opened by sqlite3WhereBegin. */ Debug.Assert( pWInfo.nLevel == 1 || pWInfo.nLevel == pTabList.nSrc ); for ( i = 0; i < pWInfo.nLevel; i++ )// for(i=0, pLevel=pWInfo.a; i